RESUMO
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.
Assuntos
Melanoma , Neoplasias Uveais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/terapia , Neoplasias Uveais/patologia , Neoplasias Uveais/diagnóstico , Melanoma/genética , Melanoma/terapia , Melanoma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral/genética , Mutação/genéticaRESUMO
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Assuntos
Melanócitos , Medicina Regenerativa , Pigmentação/fisiologia , Melaninas/fisiologia , Folículo Piloso/fisiologiaRESUMO
Purpose: Epigenetic alterations in uveal melanoma (UM) are still neither well characterized, nor understood. In this pilot study, we sought to provide a deeper insight into the possible role of epigenetic alterations in the pathogenesis of UM and their potential prognostic relevance. To this aim, we comprehensively profiled histone post-translational modifications (PTMs), which represent epigenetic features regulating chromatin accessibility and gene transcription, in UM formalin-fixed paraffin-embedded (FFPE) tissues, control tissues, UM cell lines, and healthy melanocytes. Methods: FFPE tissues of UM (n = 24), normal choroid (n = 4), human UM cell lines (n = 7), skin melanocytes (n = 6), and uveal melanocytes (n = 2) were analyzed through a quantitative liquid chromatography-mass spectrometry (LC-MS) approach. Results: Hierarchical clustering showed a clear separation with several histone PTMs that changed significantly in a tumor compared to normal samples, in both tissues and cell lines. In addition, several acetylations and H4K20me1 showed lower levels in BAP1 mutant tumors. Some of these changes were also observed when we compared GNA11 mutant tumors with GNAQ tumors. The epigenetic profiling of cell lines revealed that the UM cell lines MP65 and UPMM1 have a histone PTM pattern closer to the primary tissues than the other cell lines analyzed. Conclusions: Our results suggest the existence of different histone PTM patterns that may be important for diagnosis and prognosis in UM. However, further analyses are needed to confirm these findings in a larger cohort. The epigenetic characterization of a panel of UM cell lines suggested which cellular models are more suitable for epigenetic investigations.
Assuntos
Melanoma , Neoplasias Uveais , Humanos , Histonas , Projetos Piloto , Melanoma/metabolismo , Melanócitos/metabolismo , Neoplasias Uveais/patologia , Linhagem Celular , Espectrometria de MassasRESUMO
Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na+ /Ca2+ ) exchanger SLC8A1. This signaling cascade promotes increased levels of intracellular calcium and mitochondrial reactive oxygen species, two hallmarks of cancer. We further demonstrate that combination of an SLC8A1 inhibitor and a mitochondria-targeted antioxidant promotes enhanced cell death efficacy in LKB1- and SIK2-negative uveal melanoma cells compared to control cells. Our study also identified an LKB1-loss gene signature for the survival prognostic of patients with uveal melanoma that may be also predictive of response to the therapy combination. Our data thus identify not only metabolic vulnerabilities but also new prognostic markers, thereby providing a therapeutic strategy for particular subtypes of metastatic uveal melanoma.
Assuntos
Melanoma , Neoplasias Uveais , Humanos , Cálcio , Proliferação de Células , Melanoma/tratamento farmacológico , Espécies Reativas de Oxigênio , Neoplasias Uveais/genética , Neoplasias Uveais/patologiaRESUMO
In brachytherapy (BT), or internal radiation therapy, cancer is treated by radioactive implants. For instance, episcleral plaques (EPs) for the treatment of uveal melanoma, are designed according to generic population approximations. However, more personalized implants can enhance treatment precision through better adjustment of dose profiles to the contours of cancerous tissues. An original approach integrating biomedical imaging, 3D printing, radioactivity painting, and biomedical imaging, is developed as a workflow for the development of tumor shape-specific BT implants. First, computer-aided design plans of EP are prepared according to guidelines prescribed by the Collaborative Ocular Melanoma Study protocol. Polyetheretherketone (PEEK), a high-performance polymer suitable for permanent implants, is used to 3D-print plaques and the geometrical accuracy of the printed design is evaluated by imaging. The possibility to modulate the dose distribution in a tridimensional manner is demonstrated by painting the inner surfaces of the EPs with radioactive 103Pd, followed by dose profile measurements. The possibility to modulate dose distributions generated by these 3D-printed plaques through radioactivity painting is therefore confirmed. Ex vivo surgical tests on human eyeballs are performed as an assessment of manipulation ease. Overall, this work provides a solution for the fabrication of tumor-specific radioactive implants requiring higher dose precision.
Assuntos
Braquiterapia , Radioatividade , Neoplasias Uveais , Humanos , Braquiterapia/métodos , Radioisótopos , Paládio , Neoplasias Uveais/diagnóstico por imagem , Neoplasias Uveais/radioterapia , Neoplasias Uveais/tratamento farmacológico , Impressão TridimensionalRESUMO
Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM.
RESUMO
Uveal melanoma (UM) is the most common primary intraocular malignant tumor type in adults. Even after the treatment of the ocular tumor, the prognosis of patients with metastasis remains poor. Hence, an urgent unmet need exists to identify novel approaches to treat advanced UM. Previous studies have revealed G subunit alpha Q and alpha 11 (GNAQ/11) mutations in more than 85% of patients with UM, thus indicating the importance of GNAQ and downstream signaling pathways in UM occurrence. Here, we demonstrate that microRNA (miR)-181a-5p, a small non-coding RNA, effectively inhibited the viability, proliferation, and colony formation but induced apoptosis of UM cells. Furthermore, silencing GNAQ or AKT3 mimicked the anti-UM effects of miR-181a-5p, whereas overexpression of GNAQ or AKT3 rescued the anti-UM effects induced by miR-181a-5p. In addition, miR-181a-5p had a stronger effect in decreasing the viability of GNAQ mutant than GNAQ wild-type cells. Moreover, miR-181a-5p suppressed the total expression and phosphorylation of members of the ERK and PI3K/AKT/mTOR signaling pathways. Importantly, miR-181a-5p potently inhibited the growth of UM xenografts in nude mice. MiR-181a-5p also decreased the expression of Ki67, GNAQ, and AKT3, and induced the expression of cleaved-caspase3 in UM tumors. These results suggest that miR-181a-5p inhibits UM development by targeting GNAQ and AKT3.
RESUMO
Uveal melanoma (UM) is the most common primary intraocular tumor and often spreads to the liver. Intercellular communication though extracellular vesicles (EVs) plays an important role in several oncogenic processes, including metastasis, therapeutic resistance, and immune escape. This study examines how EVs released by UM cells modify stellate and endothelial cells in the tumor microenvironment. The surface markers, and the concentration and size of EVs derived from UM cells or choroidal melanocytes were characterized by high-resolution flow cytometry, electron microscopy, and Western blotting. The selective biodistribution of EVs was studied in mice by fluorescence imaging. The activation/contractility of stellate cells and the tubular organization of endothelial cells after exposure to melanomic EVs were determined by traction force microscopy, collagen gel contraction, or endothelial tube formation assays. We showed that large EVs from UM cells and healthy melanocytes are heterogenous in size, as well as their expression of phosphatidylserine, tetraspanins, and Tsg101. Melanomic EVs mainly accumulated in the liver and lungs of mice. Hepatic stellate cells with internalized melanomic EVs had increased contractility, whereas EV-treated endothelial cells developed more capillary-like networks. Our study demonstrates that the transfer of EVs from UM cells leads to a pro-fibrotic and pro-angiogenic phenotype in hepatic stellate and endothelial cells.
Assuntos
Vesículas Extracelulares , Melanoma , Camundongos , Animais , Microambiente Tumoral , Células Endoteliais , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Melanoma/metabolismoRESUMO
Uveal melanoma (UM) is a type of intraocular tumor with a propensity to disseminate to the liver. Despite the identification of the early driver mutations during the development of the pathology, the process of UM metastasis is still not fully comprehended. A better understanding of the genetic, molecular, and environmental factors participating to its spread and metastatic outgrowth could provide additional approaches for UM treatment. In this review, we will discuss the advances made towards the understanding of the pathogenesis of metastatic UM, summarize the current and prospective treatments, and introduce some of the ongoing research in this field.
Assuntos
Neoplasias Hepáticas/secundário , Melanoma/patologia , Neoplasias Uveais/patologia , Animais , Humanos , Fatores de RiscoRESUMO
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Assuntos
Modelos Biológicos , Neoplasias , Esferoides Celulares , Engenharia Tecidual , Alicerces Teciduais/química , Microambiente Tumoral , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologiaRESUMO
Uveal melanoma (UM) is a malignant intraocular tumor that spreads to the liver in half of the cases. Since hepatic cells could play a role in the therapeutic resistance of metastatic UM, the purpose of our study was to investigate the pro-invasive role of hepatic stellate cells (HSteCs) in metastatic UM at the micro- and macro-metastatic stages. We first performed an immunostaining with the alpha-smooth muscle actin (αSMA) to localize activated HSteCs in UM liver macro-metastases from four patients. Their accumulation of collagen was assessed with Masson's Trichrome stain. Next, we inoculated metastatic UM cells alone or with human HSteCs in triple-immunodeficient mice, in order to determine if HSteCs are recruited as early as the micro-metastatic stage. The growth of metastatic foci was imaged in the liver by ex vivo fluorescence imaging. Histological analyses were performed with Masson's Trichrome and Picrosirius Red stains, and antibodies against Melan-A and αSMA. The collagen content was measured in xenografts by quantitative polarization microscopy. In patient hepatectomy samples, activated HSteCs and their pathological matrix were localized surrounding the malignant lesions. In the mouse xenograft model, the number of hepatic metastases was increased when human HSteCs were co-inoculated. Histological analyses revealed a significant recruitment of HSteCs near the micro/macrolesions, and an increase in fibrillar collagen production. Our results show that HSteCs can provide a permissive microenvironment and might increase the therapeutic resistance of metastatic UM.
RESUMO
Uveal melanoma (UM), although a very rare disease, remains a particularly aggressive type of cancer as near 50% of the UM presenting patients will also develop liver metastases within 15 years from the initial diagnostic. One of the most reliable predictive markers of UM at risk of evolving toward the formation of liver lesions is an abnormally elevated level of expression of the transcript encoding the 5-Hydroxytryptamine (serotonin) receptor 2B (HTR2B). In our previous study, we demonstrated that transcription of the HTR2B gene was under the regulatory influences of two transcription factors (TFs), NFI and RUNX1. However, the action of these TFs was insufficient to explain the elevated level of the HTR2B protein in metastatic UM cells or the discrepancies we observed between its expression at the transcriptional and protein levels, therefore suggesting that additional post-translational modifications may also contribute to the altered expression of HTR2B in UM cells. In the present study, we investigated whether the turnover of HTR2B by the proteasome could account at least in part for its deregulated expression. Microarray analyses performed with UM cell lines derived from both non-metastatic and metastatic UM primary tumors revealed important alterations in the expression of some of the transcripts encoding both the E3 ubiquitin ligases and the various subunits of the proteasome, and these modifications were further exacerbated by cell passaging in culture. These alterations also correlated with significant changes in the enzymatic activity of the proteasome. However, the highest proteasome activity and amount of ubiquitinated HTR2B observed in the metastatic T142â¯cell line, as revealed by immunoprecipitation of ubiquitinated proteins and Western blotting using the HTR2B antibody, apparently had little impact on the total content of HTR2B protein. This contrasts with the near total disappearance of this receptor in the non-metastatic T108â¯cell line. Our study therefore suggests that the inability of the proteasome to degrade HTR2B in metastatic UM cells might rely on an increased stability of the ubiquitinated receptor in these cells.
Assuntos
Melanoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Neoplasias Uveais/metabolismo , Adolescente , Adulto , Idoso , Western Blotting , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imunoprecipitação , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/genética , Neoplasias Uveais/genéticaRESUMO
Uveal melanoma is the most common primary ocular neoplasm in adults. It is peculiar for its hematogenous dissemination and its high propensity to spread to the liver. Current treatments rarely prolong patient survival. We hypothesized that metastatic uveal melanoma cells modulate the function of surrounding hepatic stellate cells to facilitate their own growth and survival. This study was conducted to investigate the role of the hepatic microenvironment on uveal melanoma aggressiveness. We demonstrated that the paracrine signaling of surrounding hepatic stellate cells have more transcriptional impact on metastatic uveal melanoma cells. Upregulated transcripts were linked to inflammation and included several interleukins. The uveal melanoma-stellate cell crosstalk induced as well the expression of transmembrane integrins. In addition, the interleukin-6 receptor inhibitor Tocilizumab did not reduce the growth of uveal melanoma cells. Our results provide evidence that inflammatory mediators are key players in the homing of uveal melanoma cells to the liver. The bidirectional crosstalk between uveal melanoma cells and hepatic stellate cells involved pro-fibrogenic interleukins. The inflammatory characteristics of the metastatic microenvironment might offer relevant therapeutic opportunities in uveal melanoma.
Assuntos
Citocinas/genética , Células Estreladas do Fígado/metabolismo , Inflamação/metabolismo , Neoplasias Hepáticas/diagnóstico , Melanoma/metabolismo , RNA Neoplásico/genética , Neoplasias Uveais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Melanoma/patologia , Metástase Neoplásica , Microambiente Tumoral , Neoplasias Uveais/patologiaRESUMO
Nearly half of choroidal melanomas progress to the metastatic stage at 15 years. The purpose of our study was to evaluate the prognostic value of tumour-height regression rate in medium-sized choroidal melanomas treated with iodine-125 brachytherapy. A retrospective cohort study was performed on 128 patients with medium-sized choroidal melanoma who were treated with iodine-125 brachytherapy. Tumour characteristics including tumour apical height at baseline and after irradiation, recurrence, metastasis and mortality were collected from patients' records. Regression rate was defined in mm/month or in percentage of baseline apical height. Patients were statistically stratified in three groups of regression rate at 6 months using the Ward's method and Euclidian distance (slow, medium and fast regression groups). Mean initial apical height was of 5.71±1.79 mm. At 6 months, the average regression rate was 0.02±0.12 mm/month in the slow group (n=60), 0.32±0.11 mm/month in the medium group (n=52) and 0.67±0.21 mm/month in the fast group (n=16). Cox regression analysis for the recurrence, metastasis and mortality rates according to the three groups did not show any statistically significant difference. Sensitivity analyses with the regression rates at 12 months showed similar associations. Exudative retinal detachment resolved with treatment at 5.9±4.0 months, and it was more common at presentation in the fast regression rate group. The regression rate at 6 and 12 months after iodine-125 brachytherapy is not associated with a higher metastatic rate in medium-sized choroidal melanoma.
Assuntos
Braquiterapia/efeitos adversos , Braquiterapia/mortalidade , Neoplasias da Coroide/secundário , Melanoma/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias Cutâneas/secundário , Neoplasias da Coroide/radioterapia , Feminino , Seguimentos , Humanos , Metástase Linfática , Masculino , Melanoma/radioterapia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/radioterapia , Prognóstico , Estudos Retrospectivos , Neoplasias Cutâneas/radioterapia , Taxa de SobrevidaRESUMO
Uveal melanoma (UM) is the most common primary tumor in the adult, and disseminates to the liver in half of patients. A 15-gene expression profile prognostic assay allows to determine the likelihood of metastasis in patients using their ocular tumor DNA, but a cure still remains to be discovered. The serotonin receptor 2B represents the discriminant gene of this molecular signature with the greatest impact on the prognosis of UM. However, its contribution to the metastatic potential of UM remains unexplored. The purpose of this study was to investigate the effects of a selective serotonin receptor 2B antagonist on cellular and molecular behaviours of UM cells. UM cell lines expressing high level of serotonin receptor 2B proteins were selected by Western blotting. The selective serotonin receptor 2B antagonist PRX-08066 was evaluated for its impact on UM cells using viability assays, phosphorylated histone H3 immunostainings, clonogenic assays, migration assays, invasion assays and membrane-based protein kinase phosphorylation antibody arrays. The pharmacological inhibition of the serotonin receptor 2B reduced the viability of UM cells and the population in mitosis, and impaired their clonogenicity and potential of migration. It also decreased the phosphorylation of kinases from signaling pathways classically activated by the serotonin receptor 2B, as well as kinases ß-catenin, Proline-rich tyrosine kinase 2, and Signal transducer and activator of transcription 5. Our findings support a role for the serotonin receptor 2B in the proliferation and migration of UM cells, through activation of many signaling pathways such as WNT, Focal adhesion kinase and Janus kinase/STAT.
Assuntos
Melanoma/metabolismo , Pirimidinas/farmacologia , Receptor 5-HT2B de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tiofenos/farmacologia , Neoplasias Uveais/metabolismo , Adulto , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Feminino , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Fosforilação , Proteínas Quinases/metabolismo , Receptor 5-HT2B de Serotonina/fisiologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Neoplasias Uveais/genética , Neoplasias Uveais/patologiaRESUMO
We present the case of a 56-year-old man who developed a neoplasm of epithelioid histology in his anophthalmic left orbit 21 years after he underwent enucleation for a spindle cell iris melanoma. The recurrent tumour was managed by orbital exenteration. Neither further recurrence nor metastasis was diagnosed over a 5-year follow-up period. This case, along with five other similar cases in the literature,1-3 emphasises the importance of long-term follow-up after treatment of iris melanoma.
Assuntos
Enucleação Ocular/efeitos adversos , Neoplasias da Íris/patologia , Melanoma/patologia , Neoplasias Orbitárias/patologia , Humanos , Neoplasias da Íris/cirurgia , Masculino , Melanoma/cirurgia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Exenteração Orbitária/métodos , Fatores de Tempo , Resultado do TratamentoRESUMO
PURPOSE: Tissue culture is traditionally performed at atmospheric oxygen concentration (21%), which induces hyperoxic stress, as endogenous physiologic oxygen tension found in tissues varies between 2% and 9%. This discrepancy may lead to misinterpretation of results and may explain why effects observed in vitro cannot always be reproduced in vivo and vice versa. Only a few studies have been conducted in low physiologic oxygen conditions to understand the development and differentiation of cells from the eye. METHODS: The aim of this study was to investigate the growth and gene expression profile of melanocytes from the choroid permanently exposed to 21% (hyperoxic) or 3% (physiologic) oxygen with proliferation assays and DNA microarray. The cellular behavior of the melanocytes was then compared to that of cancer cells. RESULTS: The gross morphology and melanin content of choroidal melanocytes changed slightly when they were exposed to 3% O2, and the doubling time was statistically significantly faster. There was an increase in the percentage of choroidal melanocytes in the active phases of the cell cycle as observed by using the proliferation marker Ki67. The caveolin-1 senescence marker was not increased in choroidal melanocytes or uveal melanoma cells grown in hyperoxia. In comparison, the morphology of the uveal melanoma cells was similar between the two oxygen levels, and the doubling time was slower at 3% O2. Surprisingly, gene expression profiling of the choroidal melanocytes did not reveal a large list of transcripts considerably dysregulated between the two oxygen concentrations; only the lactate transporter monocarboxylate transporter (MCT4) was statistically significantly upregulated at 3% O2. CONCLUSIONS: This study showed that the oxygen concentration must be tightly controlled in experimental settings, because it influences the subsequent cellular behavior of human choroidal melanocytes.
Assuntos
Corioide/patologia , Melanócitos/patologia , Melanoma/patologia , Oxigênio/farmacologia , Neoplasias Uveais/patologia , Idoso de 80 Anos ou mais , Contagem de Células , Tamanho do Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Corioide/efeitos dos fármacos , Corioide/metabolismo , Humanos , Ácido Láctico/metabolismo , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
PURPOSE: Development of liver metastasis remains the most common cause of mortality in uveal melanoma (UM). A few cell lines cultured from primary UM tumors have been used widely to investigate the pathobiology of UM. However, the translation of basic knowledge to the clinic for the treatment of the metastatic disease has remained incremental at best. In this study, we examined whether the properties of UM cell lines at various passages were similar to their corresponding primary tumors. METHODS: Gene expression profiling by microarray was performed on UM primary tumors and derived cell lines cultured at varying passages. Expression of UM protein markers was monitored by immunohistochemical analyses and Western blotting. The in vivo tumorigenic properties of UM cultures were evaluated using athymic nude mice. RESULTS: Cell passaging severely reduced the expression of genes encoding markers typical of UM, including those of the prognostic gene signature. Marked differences between gene expression profiles of primary tumors and cell lines could be linked to the infiltrating immune and stromal cells in situ. In addition, the tumorigenic properties of UM cell lines also increased with cell passaging in culture as evaluated by their subcutaneous injection into athymic mice. CONCLUSIONS: Together, these findings demonstrate that the short-term UM primary cultures exhibit molecular features that resemble the respective surgical material and, thus, represent the best model for in vitro-assessed cancer treatments.
Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Antígeno MART-1/genética , Melanoma/genética , RNA Neoplásico/genética , Neoplasias Uveais/genética , Animais , Western Blotting , Contagem de Células , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Antígeno MART-1/biossíntese , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Microscopia de Contraste de Fase , Neoplasias Experimentais , Reação em Cadeia da Polimerase , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologiaRESUMO
Imatinib mesylate is used in targeted therapy of cancer to inhibit type III tyrosine kinase receptors, such as KIT and platelet-derived growth factor receptors (PDGFRs). Expression of KIT in uveal melanoma (UM) suggests that this receptor may be the target of imatinib mesylate therapy. However, phase II multicenter clinical studies have shown no effect of imatinib mesylate in patients with unresectable liver metastases of UM. We therefore investigated which molecular mechanisms promote imatinib mesylate-resistance in metastatic UM. Expression of KIT, stem cell factor (SCF), PDGFRα and PDGFRß, was analyzed by RT-PCR, immunostaining, and Western blot in twenty-four samples of UM liver metastases, as well as UM primary tumor and metastatic cell lines. Soluble SCF was quantified in UM cell lines using enzyme-linked immunosorbent assay. Cell viability of UM cell lines treated with imatinib mesylate and grown in SCF-supplemented medium or in microvascular endothelial cells-conditioned medium was studied by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assays. UM liver metastases and cell lines expressed KIT and SCF, but not the PDGFRs. Ninety-five percent of liver metastases expressed KIT at the protein level, but PDGFRs were not detected in these samples. Imatinib mesylate reduced the viability of UM metastatic cell lines in a concentration-dependent manner, but an increased resistance to this drug was observed when cells were incubated in SCF-supplemented or microvascular endothelial cells-conditioned medium. This study provides evidence that tumor microenvironment cytokines such as SCF may promote resistance to imatinib mesylate in metastatic UM.