Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 840, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573467

RESUMO

Using a fluorescence complementation assay, Delivered Complementation in Planta (DCIP), we demonstrate cell-penetrating peptide-mediated cytosolic delivery of peptides and recombinant proteins in Nicotiana benthamiana. We show that DCIP enables quantitative measurement of protein delivery efficiency and enables functional screening of cell-penetrating peptides for in-planta protein delivery. Finally, we demonstrate that DCIP detects cell-penetrating peptide-mediated delivery of recombinantly expressed proteins such as mCherry and Lifeact into intact leaves. We also demonstrate delivery of a recombinant plant transcription factor, WUSCHEL (AtWUS), into N. benthamiana. RT-qPCR analysis of AtWUS delivery in Arabidopsis seedlings also suggests delivered WUS can recapitulate transcriptional changes induced by overexpression of AtWUS. Taken together, our findings demonstrate that DCIP offers a new and powerful tool for interrogating cytosolic delivery of proteins in plants and highlights future avenues for engineering plant physiology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fluorescência , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
2.
Nat Nanotechnol ; 17(2): 197-205, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811553

RESUMO

Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.


Assuntos
DNA/farmacologia , Nanopartículas Metálicas/química , Nicotiana/genética , RNA Interferente Pequeno/genética , DNA/química , Inativação Gênica , Técnicas de Transferência de Genes , Ouro/química , Ouro/farmacologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Nicotiana/crescimento & desenvolvimento
3.
Nano Lett ; 21(13): 5859-5866, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152779

RESUMO

RNA interference, which involves the delivery of small interfering RNA (siRNA), has been used to validate target genes, to understand and control cellular metabolic pathways, and to use as a "green" alternative to confer pest tolerance in crops. Conventional siRNA delivery methods such as viruses and Agrobacterium-mediated delivery exhibit plant species range limitations and uncontrolled DNA integration into the plant genome. Here, we synthesize polyethylenimine-functionalized gold nanoclusters (PEI-AuNCs) to mediate siRNA delivery into intact plants and show that these nanoclusters enable efficient gene knockdown. We further demonstrate that PEI-AuNCs protect siRNA from RNase degradation while the complex is small enough to bypass the plant cell wall. Consequently, AuNCs enable gene knockdown with efficiencies of up 76.5 ± 5.9% and 76.1 ± 9.5% for GFP and ROQ1, respectively, with no observable toxicity. Our data suggest that AuNCs can deliver siRNA into intact plant cells for broad applications in plant biotechnology.


Assuntos
Ouro , Células Vegetais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Polietilenoimina , RNA Interferente Pequeno/genética
4.
Bio Protoc ; 11(1): e3897, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33732771

RESUMO

Gene knock-down in plants is a useful approach to study genotype-phenotype relationships, render disease resistance to crops, and enable efficient biosynthesis of molecules in plants. Small interfering RNA (siRNA)-mediated gene silencing is one of the most common ways to achieve gene knock-down in plants. Traditionally, siRNA is delivered into intact plant cells by coding the siRNA sequences into DNA vectors, which are then delivered through viral and/or bacterial methods. In this protocol, we provide an alternative direct delivery method of siRNA molecules into intact plant cells for efficient transient gene knock-down in model tobacco plant, Nicotiana benthamiana, leaves. Our approach uses one dimensional carbon-based nanomaterials, single-walled carbon nanotubes (SWNTs), to deliver siRNA, and does not rely on viral/bacterial delivery. The distinct advantages of our method are i) there is no need for DNA coding of siRNA sequences, ii) this abiotic method could work in a broader range of plant species than biotic methods, and iii) there are fewer regulatory complications when using abiotic delivery methods, whereby gene silencing is transient without permanent modification of the plant genome. Graphic abstract.

5.
Nat Protoc ; 15(9): 3064-3087, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32807907

RESUMO

Targeted downregulation of select endogenous plant genes is known to confer disease or pest resistance in crops and is routinely accomplished via transgenic modification of plants for constitutive gene silencing. An attractive alternative to the use of transgenics or pesticides in agriculture is the use of a 'green' alternative known as RNAi, which involves the delivery of siRNAs that downregulate endogenous genes to confer resistance. However, siRNA is a molecule that is highly susceptible to enzymatic degradation and is difficult to deliver across the lignin-rich and multi-layered plant cell wall that poses the dominant physical barrier to biomolecule delivery in plants. We have demonstrated that DNA nanostructures can be utilized as a cargo carrier for direct siRNA delivery and gene silencing in mature plants. The size, shape, compactness and stiffness of the DNA nanostructure affect both internalization into plant cells and subsequent gene silencing efficiency. Herein, we provide a detailed protocol that can be readily adopted with standard biology benchtop equipment to generate geometrically optimized DNA nanostructures for transgene-free and force-independent siRNA delivery and gene silencing in mature plants. We further discuss how such DNA nanostructures can be rationally designed to efficiently enter plant cells and deliver cargoes to mature plants, and provide guidance for DNA nanostructure characterization, storage and use. The protocol described herein can be completed in 4 d.


Assuntos
DNA/química , Portadores de Fármacos/química , Engenharia , Nanoestruturas/química , Nicotiana/metabolismo , RNA Interferente Pequeno/metabolismo , DNA/metabolismo , Portadores de Fármacos/metabolismo , RNA Interferente Pequeno/genética , Nicotiana/genética
6.
Proc Natl Acad Sci U S A ; 116(15): 7543-7548, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910954

RESUMO

Delivery of biomolecules to plants relies on Agrobacterium infection or biolistic particle delivery, the former of which is amenable only to DNA delivery. The difficulty in delivering functional biomolecules such as RNA to plant cells is due to the plant cell wall, which is absent in mammalian cells and poses the dominant physical barrier to biomolecule delivery in plants. DNA nanostructure-mediated biomolecule delivery is an effective strategy to deliver cargoes across the lipid bilayer of mammalian cells; however, nanoparticle-mediated delivery without external mechanical aid remains unexplored for biomolecule delivery across the cell wall in plants. Herein, we report a systematic assessment of different DNA nanostructures for their ability to internalize into cells of mature plants, deliver siRNAs, and effectively silence a constitutively expressed gene in Nicotiana benthamiana leaves. We show that nanostructure internalization into plant cells and corresponding gene silencing efficiency depends on the DNA nanostructure size, shape, compactness, stiffness, and location of the siRNA attachment locus on the nanostructure. We further confirm that the internalization efficiency of DNA nanostructures correlates with their respective gene silencing efficiencies but that the endogenous gene silencing pathway depends on the siRNA attachment locus. Our work establishes the feasibility of biomolecule delivery to plants with DNA nanostructures and both details the design parameters of importance for plant cell internalization and also assesses the impact of DNA nanostructure geometry for gene silencing mechanisms.


Assuntos
Brassicaceae , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Técnicas de Transferência de Genes , Nanopartículas , Nicotiana , Plantas Geneticamente Modificadas , Brassicaceae/genética , Brassicaceae/metabolismo , DNA de Plantas/genética , DNA de Plantas/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Nicotiana/genética , Nicotiana/metabolismo
7.
Nat Nanotechnol ; 14(5): 456-464, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30804481

RESUMO

Genetic engineering of plants is at the core of sustainability efforts, natural product synthesis and crop engineering. The plant cell wall is a barrier that limits the ease and throughput of exogenous biomolecule delivery to plants. Current delivery methods either suffer from host-range limitations, low transformation efficiencies, tissue damage or unavoidable DNA integration into the host genome. Here, we demonstrate efficient diffusion-based biomolecule delivery into intact plants of several species with pristine and chemically functionalized high aspect ratio nanomaterials. Efficient DNA delivery and strong protein expression without transgene integration is accomplished in Nicotiana benthamiana (Nb), Eruca sativa (arugula), Triticum aestivum (wheat) and Gossypium hirsutum (cotton) leaves and arugula protoplasts. We find that nanomaterials not only facilitate biomolecule transport into plant cells but also protect polynucleotides from nuclease degradation. Our work provides a tool for species-independent and passive delivery of genetic material, without transgene integration, into plant cells for diverse biotechnology applications.


Assuntos
Técnicas de Transferência de Genes , Gossypium/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Transgenes , Triticum/genética , Gossypium/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo , Nicotiana/metabolismo , Triticum/metabolismo
8.
Biochemistry ; 58(1): 54-64, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30480442

RESUMO

Generation, identification, and validation of optical probes to image molecular targets in a biological milieu remain a challenge. Synthetic molecular recognition approaches leveraging the intrinsic near-infrared fluorescence of single-walled carbon nanotubes are promising for long-term biochemical imaging in tissues. However, generation of nanosensors for selective imaging of molecular targets requires a heuristic approach. Here, we present a chemometric platform for rapidly screening libraries of candidate single-walled carbon nanotube nanosensors against biochemical analytes to quantify the fluorescence response to small molecules, including vitamins, neurotransmitters, and chemotherapeutics. We further show this method can be applied to identify biochemical analytes that selectively modulate the intrinsic near-infrared fluorescence of candidate nanosensors. Chemometric analysis thus enables identification of nanosensor-analyte "hits" and also nanosensor fluorescence signaling modalities such as wavelength shifts that are optimal for translation to biological imaging. Through this approach, we identify and characterize a nanosensor for the chemotherapeutic anthracycline doxorubicin (DOX), which provides a ≤17 nm fluorescence red-shift and exhibits an 8 µM limit of detection, compatible with peak circulatory concentrations of doxorubicin common in therapeutic administration. We demonstrate the selectivity of this nanosensor over dacarbazine, a chemotherapeutic commonly co-injected with doxorubicin. Lastly, we establish nanosensor tissue compatibility for imaging of doxorubicin in muscle tissue by incorporating nanosensors into the mouse hindlimb and measuring the nanosensor response to exogenous DOX administration. Our results motivate chemometric approaches to nanosensor discovery for chronic imaging of drug partitioning into tissues and toward real-time monitoring of drug accumulation.


Assuntos
Técnicas Biossensoriais/métodos , Doxorrubicina/metabolismo , Fluorescência , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Nanotubos de Carbono/química , Animais , Antibióticos Antineoplásicos/metabolismo , Sangue/metabolismo , Membro Posterior/metabolismo , Humanos , Camundongos , Imagem Molecular , Bibliotecas de Moléculas Pequenas/química
9.
Chem Sci ; 8(11): 7552-7559, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29163910

RESUMO

Peptide drugs have been difficult to translate into effective therapies due to their low in vivo stability. Here, we report a strategy to develop peptide-based therapeutic nanoparticles by screening a peptide library differing by single-site amino acid mutations of lysine-modified cholesterol. Certain cholesterol-modified peptides are found to promote and stabilize peptide α-helix formation, resulting in selectively cell-permeable peptides. One cholesterol-modified peptide self-assembles into stable nanoparticles with considerable α-helix propensity stabilized by intermolecular van der Waals interactions between inter-peptide cholesterol molecules, and shows 68.3% stability after incubation with serum for 16 h. The nanoparticles in turn interact with cell membrane cholesterols that are disproportionately present in cancer cell membranes, inducing lipid raft-mediated endocytosis and cancer cell death. Our results introduce a strategy to identify peptide nanoparticles that can effectively reduce tumor volumes when administered to in in vivo mice models. Our results also provide a simple platform for developing peptide-based anticancer drugs.

10.
Nano Lett ; 17(12): 7951-7961, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148804

RESUMO

The engineering of living plants for visible light emission and sustainable illumination is compelling because plants possess independent energy generation and storage mechanisms and autonomous self-repair. Herein, we demonstrate a plant nanobionic approach that enables exceptional luminosity and lifetime utilizing four chemically interacting nanoparticles, including firefly luciferase conjugated silica (SNP-Luc), d-luciferin releasing poly(lactic-co-glycolic acid) (PLGA-LH2), coenzyme A functionalized chitosan (CS-CoA) and semiconductor nanocrystal phosphors for longer wavelength modulation. An in vitro kinetic model incorporating the release rates of the nanoparticles is developed to maximize the chemiluminescent lifetimes to exceed 21.5 h. In watercress (Nasturtium officinale) and other species, the nanoparticles circumvent limitations such as luciferin toxicity above 400 µM and colocalization of enzymatic reactions near high adenosine triphosphate (ATP) production. Pressurized bath infusion of nanoparticles (PBIN) is introduced to deliver a mixture of nanoparticles to the entire living plant, well described using a nanofluidic mathematical model. We rationally design nanoparticle size and charge to control localization within distinct tissues compartments with 10 nm nanoparticles localizing within the leaf mesophyll and stomata guard cells, and those larger than 100 nm segregated in the leaf mesophyll. The results are mature watercress plants that emit greater than 1.44 × 1012 photons/sec or 50% of 1 µW commercial luminescent diodes and modulate "off" and "on" states by chemical addition of dehydroluciferin and coenzyme A, respectively. We show that CdSe nanocrystals can shift the chemiluminescent emission to 760 nm enabling near-infrared (nIR) signaling. These results advance the viability of nanobionic plants as self-powered photonics, direct and indirect light sources.


Assuntos
Brassicaceae/metabolismo , Substâncias Luminescentes/química , Nanopartículas/química , Nasturtium/metabolismo , Spinacia oleracea/metabolismo , Brassicaceae/química , Compostos de Cádmio/química , Compostos de Cádmio/metabolismo , Quitosana/análogos & derivados , Quitosana/química , Quitosana/metabolismo , Coenzima A/química , Coenzima A/metabolismo , Luciferina de Vaga-Lumes/química , Luciferina de Vaga-Lumes/metabolismo , Luz , Luciferases/química , Luciferases/metabolismo , Luminescência , Substâncias Luminescentes/metabolismo , Nasturtium/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Radiação , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Spinacia oleracea/química
11.
ACS Sens ; 2(8): 1139-1145, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28741347

RESUMO

Hypoxia is a common feature of tumor cells. Nitroreductase (NTR), a common biomarker of hypoxia, has been widely used to evaluate the extent of tumor hypoxia. In this study, three fluorescent probes (FBN-1-3) were synthesized to monitor the extent of hypoxia in cancer cells in real time. FBN-1-3 were composed of a fluorescein analogue and one of three different aromatic nitro groups. Of these probes, FBN-1 showed excellent sensitivity and selectivity in detecting hypoxia via a reduction in O2 concentration. Confocal fluorescence imaging and flow cytometry demonstrated that HepG-2, A549, and SKOV-3 cells incubated with FBN-1 under reduced oxygen conditions showed significantly enhanced fluorescence. A mouse HepG-2 tumor model confirmed that FBN-1 responds rapidly to NTR and can be used to evaluate the degree of tumor hypoxia. The changes in intra- and extracellular NTR in tumor cells were also concurrently monitored, which did not reveal a link between NTR concentration and degree of hypoxia. Our work provides a functional probe for tumor hypoxia, and our results suggest the fluorescent response of our probe is due to a decrease in O2 concentration, and not NTR concentration.

12.
Nano Lett ; 16(2): 1161-72, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26760228

RESUMO

Nanoparticles offer clear advantages for both passive and active penetration into biologically important membranes. However, the uptake and localization mechanism of nanoparticles within living plants, plant cells, and organelles has yet to be elucidated.1 Here, we examine the subcellular uptake and kinetic trapping of a wide range of nanoparticles for the first time, using the plant chloroplast as a model system, but validated in vivo in living plants. Confocal visible and near-infrared fluorescent microscopy and single particle tracking of gold-cysteine-AF405 (GNP-Cys-AF405), streptavidin-quantum dot (SA-QD), dextran and poly(acrylic acid) nanoceria, and various polymer-wrapped single-walled carbon nanotubes (SWCNTs), including lipid-PEG-SWCNT, chitosan-SWCNT and 30-base (dAdT) sequence of ssDNA (AT)15 wrapped SWCNTs (hereafter referred to as ss(AT)15-SWCNT), are used to demonstrate that particle size and the magnitude, but not the sign, of the zeta potential are key in determining whether a particle is spontaneously and kinetically trapped within the organelle, despite the negative zeta potential of the envelope. We develop a mathematical model of this lipid exchange envelope and penetration (LEEP) mechanism, which agrees well with observations of this size and zeta potential dependence. The theory predicts a critical particle size below which the mechanism fails at all zeta potentials, explaining why nanoparticles are critical for this process. LEEP constitutes a powerful particulate transport and localization mechanism for nanoparticles within the plant system.

13.
Nat Nanotechnol ; 8(12): 959-68, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24270641

RESUMO

Understanding molecular recognition is of fundamental importance in applications such as therapeutics, chemical catalysis and sensor design. The most common recognition motifs involve biological macromolecules such as antibodies and aptamers. The key to biorecognition consists of a unique three-dimensional structure formed by a folded and constrained bioheteropolymer that creates a binding pocket, or an interface, able to recognize a specific molecule. Here, we show that synthetic heteropolymers, once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. To prove the generality of this phenomenon, we report three examples of heteropolymer-nanotube recognition complexes for riboflavin, L-thyroxine and oestradiol. In each case, the recognition was predicted using a two-dimensional thermodynamic model of surface interactions in which the dissociation constants can be tuned by perturbing the chemical structure of the heteropolymer. Moreover, these complexes can be used as new types of spatiotemporal sensors based on modulation of the carbon nanotube photoemission in the near-infrared, as we show by tracking riboflavin diffusion in murine macrophages.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Adsorção , Animais , Estradiol/química , Estradiol/isolamento & purificação , Camundongos , Nanotubos de Carbono/ultraestrutura , Riboflavina/química , Riboflavina/isolamento & purificação , Tiroxina/química , Tiroxina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA