Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Chem Genomics ; 5: 13-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21643506

RESUMO

CPT-11 is a widely-used anti-cancer drug that is converted in vivo to its active metabolite, SN-38. In the liver, enzymes detoxify SN-38 by coupling it to a glucuronidate moiety and this inactive compound (SN-38G) is excreted into the gastrointestinal tract. In the intestine, commensal bacteria convert the SN-38G back to the active and toxic SN-38 using bacterial ß-glucuronidase enzyme (GUS). This intestinal SN-38 causes debilitating diarrhea that prevents dose-intensification and efficacy in a significant fraction of patients undergoing CPT-11 treatment for cancer. This CPT-11 metabolic pathway suggests that small molecule inhibitors of GUS may have utility as novel therapeutics for prevention of dose-limiting diarrhea resulting from CPT-11 therapy. To identify chemical inhibitors of GUS activity, we employed and validated a high throughput, fluorescence-based biochemical assay and used this assay to screen a compound library. Novel inhibitors of GUS were identified with IC(50) values ranging from 50 nM to 4.8 µM. These compounds may be useful as chemical probes for use in proof-of-concept experiments designed to determine the efficacy of GUS inhibitors in altering the intestinal metabolism of drugs. Our results demonstrate that this high throughput assay can be used to identify small molecule inhibitors of GUS.

2.
Science ; 330(6005): 831-5, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21051639

RESUMO

The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial ß-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial ß-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial ß-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Camptotecina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Glucuronidase/farmacologia , Animais , Antineoplásicos Fitogênicos/metabolismo , Bactérias Anaeróbias/efeitos dos fármacos , Camptotecina/metabolismo , Camptotecina/toxicidade , Linhagem Celular Tumoral , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Cristalografia por Raios X , Diarreia/prevenção & controle , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Feminino , Glucuronidase/química , Glucuronidase/isolamento & purificação , Glucuronidase/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Irinotecano , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Pró-Fármacos/metabolismo , Pró-Fármacos/toxicidade , Conformação Proteica
3.
J Lipid Res ; 47(4): 681-99, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16477080

RESUMO

More than 100 proteins necessary for eukaryotic cell growth, differentiation, and morphology require posttranslational modification by the covalent attachment of an isoprenoid lipid (prenylation). Prenylated proteins include members of the Ras, Rab, and Rho families, lamins, CENPE and CENPF, and the gamma subunit of many small heterotrimeric G proteins. This modification is catalyzed by the protein prenyltransferases: protein farnesyltransferase (FTase), protein geranylgeranyltransferase type I (GGTase-I), and GGTase-II (or RabGGTase). In this review, we examine the structural biology of FTase and GGTase-I (the CaaX prenyltransferases) to establish a framework for understanding the molecular basis of substrate specificity and mechanism. These enzymes have been identified in a number of species, including mammals, fungi, plants, and protists. Prenyltransferase structures include complexes that represent the major steps along the reaction path, as well as a number of complexes with clinically relevant inhibitors. Such complexes may assist in the design of inhibitors that could lead to treatments for cancer, viral infection, and a number of deadly parasitic diseases.


Assuntos
Alquil e Aril Transferases , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Animais , Sítios de Ligação , Ciclo Celular/fisiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Especificidade por Substrato , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA