Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(8): e0221858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31454399

RESUMO

BACKGROUND: Genomic data have become major resources to understand complex mechanisms at fine-scale temporal and spatial resolution in functional and evolutionary genetic studies, including human diseases, such as cancers. Recently, a large number of whole genomes of evolving populations of yeast (Saccharomyces cerevisiae W303 strain) were sequenced in a time-dependent manner to identify temporal evolutionary patterns. For this type of study, a chromosome-level sequence assembly of the strain or population at time zero is required to compare with the genomes derived later. However, there is no fully automated computational approach in experimental evolution studies to establish the chromosome-level genome assembly using unique features of sequencing data. METHODS AND RESULTS: In this study, we developed a new software pipeline, the integrative meta-assembly pipeline (IMAP), to build chromosome-level genome sequence assemblies by generating and combining multiple initial assemblies using three de novo assemblers from short-read sequencing data. We significantly improved the continuity and accuracy of the genome assembly using a large collection of sequencing data and hybrid assembly approaches. We validated our pipeline by generating chromosome-level assemblies of yeast strains W303 and SK1, and compared our results with assemblies built using long-read sequencing and various assembly evaluation metrics. We also constructed chromosome-level sequence assemblies of S. cerevisiae strain Sigma1278b, and three commonly used fungal strains: Aspergillus nidulans A713, Neurospora crassa 73, and Thielavia terrestris CBS 492.74, for which long-read sequencing data are not yet available. Finally, we examined the effect of IMAP parameters, such as reference and resolution, on the quality of the final assembly of the yeast strains W303 and SK1. CONCLUSIONS: We developed a cost-effective pipeline to generate chromosome-level sequence assemblies using only short-read sequencing data. Our pipeline combines the strengths of reference-guided and meta-assembly approaches. Our pipeline is available online at http://github.com/jkimlab/IMAP including a Docker image, as well as a Perl script, to help users install the IMAP package, including several prerequisite programs. Users can use IMAP to easily build the chromosome-level assembly for the genome of their interest.


Assuntos
Análise de Sequência de DNA , Software , Cromossomos Fúngicos , Genoma Fúngico , Anotação de Sequência Molecular , Sintenia/genética
2.
Nature ; 500(7464): 571-4, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23873039

RESUMO

The dynamics of adaptation determine which mutations fix in a population, and hence how reproducible evolution will be. This is central to understanding the spectra of mutations recovered in the evolution of antibiotic resistance, the response of pathogens to immune selection, and the dynamics of cancer progression. In laboratory evolution experiments, demonstrably beneficial mutations are found repeatedly, but are often accompanied by other mutations with no obvious benefit. Here we use whole-genome whole-population sequencing to examine the dynamics of genome sequence evolution at high temporal resolution in 40 replicate Saccharomyces cerevisiae populations growing in rich medium for 1,000 generations. We find pervasive genetic hitchhiking: multiple mutations arise and move synchronously through the population as mutational 'cohorts'. Multiple clonal cohorts are often present simultaneously, competing with each other in the same population. Our results show that patterns of sequence evolution are driven by a balance between these chance effects of hitchhiking and interference, which increase stochastic variation in evolutionary outcomes, and the deterministic action of selection on individual mutations, which favours parallel evolutionary solutions in replicate populations.


Assuntos
Células Clonais/citologia , Evolução Molecular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Adaptação Fisiológica/genética , Núcleo Celular/genética , Células Clonais/metabolismo , Genes Fúngicos/genética , Mutação/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/citologia , Processos Estocásticos , Fatores de Tempo
3.
G3 (Bethesda) ; 3(9): 1453-65, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23821616

RESUMO

DNA mismatch repair is a highly conserved DNA repair pathway. In humans, germline mutations in hMSH2 or hMLH1, key components of mismatch repair, have been associated with Lynch syndrome, a leading cause of inherited cancer mortality. Current estimates of the mutation rate and the mutational spectra in mismatch repair defective cells are primarily limited to a small number of individual reporter loci. Here we use the yeast Saccharomyces cerevisiae to generate a genome-wide view of the rates, spectra, and distribution of mutation in the absence of mismatch repair. We performed mutation accumulation assays and next generation sequencing on 19 strains, including 16 msh2 missense variants implicated in Lynch cancer syndrome. The mutation rate for DNA mismatch repair null strains was approximately 1 mutation per genome per generation, 225-fold greater than the wild-type rate. The mutations were distributed randomly throughout the genome, independent of replication timing. The mutation spectra included insertions/deletions at homopolymeric runs (87.7%) and at larger microsatellites (5.9%), as well as transitions (4.5%) and transversions (1.9%). Additionally, repeat regions with proximal repeats are more likely to be mutated. A bias toward deletions at homopolymers and insertions at (AT)n microsatellites suggests a different mechanism for mismatch generation at these sites. Interestingly, 5% of the single base pair substitutions might represent double-slippage events that occurred at the junction of immediately adjacent repeats, resulting in a shift in the repeat boundary. These data suggest a closer scrutiny of tumor suppressors with homopolymeric runs with proximal repeats as the potential drivers of oncogenesis in mismatch repair defective cells.


Assuntos
Reparo de Erro de Pareamento de DNA , Genoma Fúngico , Saccharomyces cerevisiae/genética , Alelos , Cromossomos/genética , Cromossomos/metabolismo , Deleção de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites/genética , Proteína 2 Homóloga a MutS/genética , Mutagênese Insercional , Taxa de Mutação , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA