Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1733, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409212

RESUMO

Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements. We show that the PfGrx-catalyzed oxidation of roGFP2 occurs via a monothiol mechanism and is up to three orders of magnitude faster when roGFP2 and PfGrx are fused. The oxidation kinetics of roGFP2-PfGrx fusion constructs reflect at physiological GSSG concentrations the glutathionylation kinetics of the glutaredoxin moiety, thus allowing intracellular structure-function analysis. Reduction of the roGFP2 disulfide occurs via a monothiol mechanism and involves a ternary complex with GSH and PfGrx. Our study provides the mechanistic basis for understanding roGFP2 redox sensing and challenges previous mechanisms for protein disulfide reduction.


Assuntos
Glutarredoxinas , Glutationa , Proteínas de Fluorescência Verde/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Oxirredução , Dissulfetos/metabolismo , Catálise , Dissulfeto de Glutationa/metabolismo
2.
Chemistry ; 30(21): e202304212, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38408264

RESUMO

Cu-thiosemicarbazones have been intensively investigated for their application in cancer therapy or as antimicrobials. Copper(II)-di-2-pyridylketone-4,4-dimethyl-thiosemicarbazone (CuII-Dp44mT) showed anticancer activity in the submicromolar concentration range in cell culture. The interaction of CuII-Dp44mT with thiols leading to their depletion or inhibition was proposed to be involved in this activity. Indeed, CuII-Dp44mT can catalyze the oxidation of thiols although with slow kinetics. The present work aims to obtain insights into the catalytic activity and selectivity of CuII-Dp44mT toward the oxidation of different biologically relevant thiols. Reduced glutathione (GSH), L-cysteine (Cys), N-acetylcysteine (NAC), D-penicillamine (D-Pen), and the two model proteins glutaredoxin (Grx) and thioredoxin (Trx) were investigated. CuII-Dp44mT catalyzed the oxidation of these thiols with different kinetics, with rates in the following order D-Pen>Cys≫NAC>GSH and Trx>Grx. CuII-Dp44mT was more efficient than CuII chloride for the oxidation of NAC and GSH, but not D-Pen and Cys. In mixtures of biologically relevant concentrations of GSH and either Cys, Trx, or Grx, the oxidation kinetics and spectral properties were similar to that of GSH alone, indicating that the interaction of these thiols with CuII-Dp44mT is dominated by GSH. Hence GSH could protect other thiols against potential deleterious oxidation by CuII-Dp44mT.


Assuntos
Cobre , Tiossemicarbazonas , Cobre/metabolismo , Compostos de Sulfidrila , Oxirredução , Glutationa/metabolismo , Penicilamina/metabolismo , Acetilcisteína/metabolismo
3.
Metabolites ; 13(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37755292

RESUMO

Furan and 2-methylfuran (2-MF) are food contaminants that are classified as potentially carcinogenic to humans. The main source of exposure for adults via food is coffee consumption. Furan and 2-MF are volatile, which complicates exposure assessment because their content measured in food prior to consumption does not afford a reliable dosimetry. Therefore, other ways of exposure assessment need to be developed, preferably by monitoring exposure biomarkers, e.g., selected metabolites excreted in urine. In this study, cis-2-buten-1,4-dial (BDA)-derived urinary furan metabolites Lys-BDA (l-2-amino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)hexanoic acid), AcLys-BDA (l-2-(acetylamino)-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)hexanoic acid) and GSH-BDA (N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinyl-glycine cyclic sulfide), as well as acetyl acrolein (AcA, 2-oxo-pent-2-enal)-derived metabolites Lys-AcA (l-2-(acetylamino)-6-(2,5-dihydro-5-methyl-2-oxo-1H-pyrrol-1-yl)-hexanoic acid) and AcLys-AcA (l-2-amino-6-(2,5-dihydro-5-methyl-2-oxo-1H-pyrrol-1-yl)-hexanoic acid) and their stable isotopically labeled analogs, were synthesized and characterized through NMR and MS, and a stable isotope dilution analysis (SIDA) with UPLC-ESI-MS/MS was established. As a proof of concept, urinary samples of a four-day human intervention study were used. In the frame of this study, ten subjects ingested 500 mL of coffee containing 0.648 µmol furan and 1.059 µmol 2-MF. Among the furan metabolites, AcLys-BDA was the most abundant, followed by Lys-BDA and GSH-BDA. Exposure to 2-MF via the coffee brew led to the formation of Lys-AcA and AcLys-AcA. Within 24 h, 89.1% of the ingested amount of furan and 15.4% of the ingested amount of 2-MF were detected in the urine in the form of the investigated metabolites. Therefore, GSH-BDA, Lys-BDA, AcLys-BDA, Lys-AcA and AcLys-AcA may be suitable as short-term-exposure biomarkers of furan and 2-MF exposure.

4.
Free Radic Biol Med ; 208: 165-177, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541455

RESUMO

Dimedone and its derivates are used as selective probes for the nucleophilic detection of sulfenic acids in biological samples. Qualitative analyses suggested that dimedone also reacts with cyclic sulfenamides. Furthermore, under physiological conditions, dimedone must compete with the highly concentrated nucleophile glutathione. We therefore quantified the reaction kinetics for a cyclic sulfenamide model peptide and the sulfenic acids of glutathione and a model peroxiredoxin in the presence or absence of dimedone and glutathione. We show that the cyclic sulfenamide is stabilized at lower pH and that it reacts with dimedone. While reactions between dimedone and sulfenic acids or the cyclic sulfenamide have similar rate constants, glutathione kinetically outcompetes dimedone as a nucleophile by several orders of magnitude. Our comparative in vitro and intracellular analyses challenge the selectivity of dimedone. Consequently, the dimedone labeling of cysteinyl residues inside living cells points towards unidentified reaction pathways or unknown, kinetically competitive redox species.


Assuntos
Glutationa , Ácidos Sulfênicos , Ácidos Sulfênicos/química , Glutationa/metabolismo , Cicloexanonas/química , Oxirredução , Cisteína/metabolismo
5.
Protein Sci ; 31(5): e4290, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481660

RESUMO

Peroxiredoxins use a variety of thiols to rapidly reduce hydroperoxides and peroxynitrite. While the oxidation kinetics of peroxiredoxins have been studied in great detail, enzyme-specific differences regarding peroxiredoxin reduction and the overall rate-limiting step under physiological conditions often remain to be deciphered. The 1-Cys peroxiredoxin 5 homolog PfAOP from the malaria parasite Plasmodium falciparum is an established model enzyme for glutathione/glutaredoxin-dependent peroxiredoxins. Here, we reconstituted the catalytic cycle of PfAOP in vitro and analyzed the reaction between oxidized PfAOP and reduced glutathione (GSH) using molecular docking and stopped-flow measurements. Molecular docking revealed that oxidized PfAOP has to adopt a locally unfolded conformation to react with GSH. Furthermore, we determined a second-order rate constant of 6 × 105 M-1  s-1 at 25°C and thermodynamic activation parameters ΔH‡ , ΔS‡ , and ΔG‡ of 39.8 kJ/mol, -0.8 J/mol, and 40.0 kJ/mol, respectively. The gain-of-function mutant PfAOPL109M had almost identical reaction parameters. Taking into account physiological hydroperoxide and GSH concentrations, we suggest (a) that the reaction between oxidized PfAOP and GSH might be even faster than the formation of the sulfenic acid in vivo, and (b) that conformational changes are likely rate limiting for PfAOP catalysis. In summary, we characterized and quantified the reaction between GSH and the model enzyme PfAOP, thus providing detailed insights regarding the reactivity of its sulfenic acid and the versatile chemistry of peroxiredoxins.


Assuntos
Peroxirredoxinas , Plasmodium falciparum , Glutationa , Peróxido de Hidrogênio/química , Simulação de Acoplamento Molecular , Peroxirredoxinas/química , Peroxirredoxinas/genética , Ácidos Sulfênicos/química
6.
Mol Biol Cell ; 31(12): 1246-1258, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267197

RESUMO

The orientation of microtubule (MT) networks is exploited by motors to deliver cargoes to specific intracellular destinations and is thus essential for cell polarity and function. Reconstituted in vitro systems have largely contributed to understanding the molecular framework regulating the behavior of MT filaments. In cells, however, MTs are exposed to various biomechanical forces that might impact on their orientation, but little is known about it. Oocytes, which display forceful cytoplasmic streaming, are excellent model systems to study the impact of motion forces on cytoskeletons in vivo. Here we implement variational optical flow analysis as a new approach to analyze the polarity of MTs in the Drosophila oocyte, a cell that displays distinct Kinesin-dependent streaming. After validating the method as robust for describing MT orientation from confocal movies, we find that increasing the speed of flows results in aberrant plus end growth direction. Furthermore, we find that in oocytes where Kinesin is unable to induce cytoplasmic streaming, the growth direction of MT plus ends is also altered. These findings lead us to propose that cytoplasmic streaming - and thus motion by advection - contributes to the correct orientation of MTs in vivo. Finally, we propose a possible mechanism for a specialized cytoplasmic actin network (the actin mesh) to act as a regulator of flow speeds to counteract the recruitment of Kinesin to MTs.


Assuntos
Cinesinas/metabolismo , Microtúbulos/fisiologia , Oócitos/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Polaridade Celular , Citoplasma/metabolismo , Corrente Citoplasmática/fisiologia , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Feminino , Cinesinas/fisiologia , Fenômenos Mecânicos , Microtúbulos/metabolismo , Fluxo Óptico , Orientação Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA