Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 8(1): 4, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765070

RESUMO

Autophagy regulates the degradation of damaged organelles and protein aggregates, and is critical for neuronal development, homeostasis, and maintenance, yet few neurodevelopmental disorders have been associated with pathogenic variants in genes encoding autophagy-related proteins. We report three individuals from two unrelated families with a neurodevelopmental disorder characterized by speech and motor impairment, and similar facial characteristics. Rare, conserved, bi-allelic variants were identified in ATG4D, encoding one of four ATG4 cysteine proteases important for autophagosome biogenesis, a hallmark of autophagy. Autophagosome biogenesis and induction of autophagy were intact in cells from affected individuals. However, studies evaluating the predominant substrate of ATG4D, GABARAPL1, demonstrated that three of the four ATG4D patient variants functionally impair ATG4D activity. GABARAPL1 is cleaved or "primed" by ATG4D and an in vitro GABARAPL1 priming assay revealed decreased priming activity for three of the four ATG4D variants. Furthermore, a rescue experiment performed in an ATG4 tetra knockout cell line, in which all four ATG4 isoforms were knocked out by gene editing, showed decreased GABARAPL1 priming activity for the two ATG4D missense variants located in the cysteine protease domain required for priming, suggesting that these variants impair the function of ATG4D. The clinical, bioinformatic, and functional data suggest that bi-allelic loss-of-function variants in ATG4D contribute to the pathogenesis of this syndromic neurodevelopmental disorder.

2.
Genome Biol ; 16: 266, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26673150

RESUMO

BACKGROUND: Chronic psychological stress is associated with accelerated aging and increased risk for aging-related diseases, but the underlying molecular mechanisms are unclear. RESULTS: We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock. After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 % (110/353) of these CpGs and transcription in 81.7 % (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including coronary artery disease, arteriosclerosis, and leukemias. CONCLUSIONS: Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking chronic stress with accelerated aging and heightened disease risk.


Assuntos
Envelhecimento/genética , Epigênese Genética , Glucocorticoides/metabolismo , Estresse Psicológico/genética , Adolescente , Adulto , Negro ou Afro-Americano , Idoso , Estudos de Casos e Controles , Ilhas de CpG , Dexametasona/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Glucocorticoides/agonistas , Elementos de Resposta , Transdução de Sinais , Estresse Psicológico/etnologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , População Urbana
3.
Genes Dis ; 2(3): 247-254, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30258868

RESUMO

This review considers available evidence for mechanisms of conferred adaptive advantages in the face of specific infectious diseases. In short, we explore a number of genetic conditions, which carry some benefits in adverse circumstances including exposure to infectious agents. The examples discussed are conditions known to result in resistance to a specific infectious disease, or have been proposed as being associated with resistance to various infectious diseases. These infectious disease-genetic disorder pairings include malaria and hemoglobinopathies, cholera and cystic fibrosis, tuberculosis and Tay-Sachs disease, mycotic abortions and phenylketonuria, infection by enveloped viruses and disorders of glycosylation, infection by filoviruses and Niemann-Pick C1 disease, as well as rabies and myasthenia gravis. We also discuss two genetic conditions that lead to infectious disease hypersusceptibility, although we did not cover the large number of immunologic defects leading to infectious disease hypersusceptibilities. Four of the resistance-associated pairings (malaria/hemogloginopathies, cholera/cystic fibrosis, tuberculosis/Tay-Sachs, and mycotic abortions/phenylketonuria) appear to be a result of selection pressures in geographic regions in which the specific infectious agent is endemic. The other pairings do not appear to be based on selection pressure and instead may be serendipitous. Nonetheless, research investigating these relationships may lead to treatment options for the aforementioned diseases by exploiting established mechanisms between genetically affected cells and infectious organisms. This may prove invaluable as a starting point for research in the case of diseases that currently have no reliably curative treatments, e.g., HIV, rabies, and Ebola.

4.
Med Hypotheses ; 83(3): 343-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24986645

RESUMO

This manuscript considers available evidence that a specific Salmonella strain could be used as an effective orally-administered option for cancer therapy involving the brain. It has been established that Salmonella preferentially colonizes neoplastic tissue and thrives as a facultative anaerobe in the intra-tumor environment. Although Salmonella accumulates in tumors by passive processes, it is still possible for lipopolysaccharide to cause sepsis and endotoxic shock during the migration of bacteria to the tumor site. An LPS-free version of a recently identified Salmonella isolate may have the capability to circumvent the blood brain barrier and provide a safer method of reaching brain tumors. This isolate merits further research as a "Trojan horse" for future oral biotherapy of brain cancer.


Assuntos
Neoplasias Encefálicas/microbiologia , Salmonella/fisiologia , Animais , Antineoplásicos/administração & dosagem , Barreira Hematoencefálica , Encéfalo/patologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/terapia , Bovinos , Modelos Animais de Doenças , Humanos , Hipóxia , Lipopolissacarídeos/química , Mutação , Neoplasias/complicações , Neoplasias/microbiologia , Neoplasias/terapia , Sepse/fisiopatologia , Choque Séptico/fisiopatologia , Suínos
5.
Arch Biochem Biophys ; 502(1): 8-16, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20599666

RESUMO

beta,beta-Carotene 15,15'-monooxygenase-1 (BCMO1) is a key enzyme in vitamin A metabolism in mammals. Various dietary components such as non-pro-vitamin A carotenoids, fat, and polyphenols have been shown to influence the intestinal absorption and conversion of pro-vitamin A carotenoids. Furthermore, vitamin A deficiency has been shown to induce BCMO1 expression, whereas supplementation with vitamin A or its active metabolites, all-trans and 9-cis retinoic acid, dose-dependently reverse these effects. A diet-responsive regulatory network involving the intestine specific homeodomain transcription factor ISX has been shown to regulate the intestinal vitamin A uptake and production via a negative feedback control. Furthermore, non-synonymous single nucleotide polymorphisms in the human BCMO1 gene have been discovered causing observably reduced BCMO1 activity. Detailed knowledge about BCMO1 regulation as well as genetic variations causing variable cleavage activities may provide a background, on which individual and/or population based dietary recommendations for beta-carotene and vitamin A intake could be established.


Assuntos
beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Antioxidantes/administração & dosagem , Carotenoides/administração & dosagem , Carotenoides/metabolismo , Dieta , Gorduras na Dieta/efeitos adversos , Proteínas Alimentares/administração & dosagem , Flavonoides/administração & dosagem , Regulação Enzimológica da Expressão Gênica , Humanos , Cinética , Modelos Biológicos , Fenóis/administração & dosagem , Polimorfismo de Nucleotídeo Único , Polifenóis , Especificidade da Espécie , Especificidade por Substrato , Distribuição Tecidual , Vitamina A/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/química
6.
Am J Respir Cell Mol Biol ; 29(6): 694-701, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12816733

RESUMO

Recently, we used gene expression profiling of lung adenocarcinoma and paired normal tissue from smokers and nonsmokers to identify genes and molecular pathways associated with cigarette smoking and lung carcinogenesis. The gene encoding Glypican 3, a glycosylphosphatidylinositol-linked heparan sulfate proteoglycan, was decreased in lung adenocarcinoma. Within nonmalignant lung, GPC3 expression was decreased in smokers compared with nonsmokers; indicating that expression is associated with cigarette smoking. Microarray results were confirmed using an independent cohort of tumors and nonmalignant lung tissues. Immunohistochemical studies localized Glypican 3 protein expression to the apical surface of lung bronchiolar epithelial cells, potential cells of origin for adenocarcinoma. Northern blot analysis demonstrated expression was absent in all tested non-small cell lung carcinoma lines. Pharmacologic treatment of lung cell lines indicated that GPC3 expression was epigenetically silenced by promoter hypermethylation. Human lung carcinoma tumor cells ectopically expressing GPC3 demonstrated increased apoptosis response when exposed to etoposide and growth inhibition when implanted in nude mice. These findings suggest that GPC3 is a candidate lung tumor suppressor gene whose expression may be regulated by exposure to cigarette smoke and functions to modulate cellular response to exogenous damage.


Assuntos
Azacitidina/análogos & derivados , Genes Supressores de Tumor , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/fisiologia , Azacitidina/metabolismo , Linhagem Celular Tumoral , Decitabina , Inibidores Enzimáticos/metabolismo , Perfilação da Expressão Gênica , Glipicanas , Humanos , Ácidos Hidroxâmicos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Mucosa Respiratória/citologia , Mucosa Respiratória/patologia , Mucosa Respiratória/fisiologia , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA