Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 109(5): 766-778, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551893

RESUMO

It has been proposed that diuretics can improve renal tissue oxygenation through inhibition of tubular sodium reabsorption and reduced metabolic demand. However, the impact of clinically used diuretic drugs on the renal cortical and medullary microcirculation is unclear. Therefore, we examined the effects of three commonly used diuretics, at clinically relevant doses, on renal cortical and medullary perfusion and oxygenation in non-anaesthetised healthy sheep. Merino ewes received acetazolamide (250 mg; n = 9), furosemide (20 mg; n = 10) or amiloride (10 mg; n = 7) intravenously. Systemic and renal haemodynamics, renal cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ , and renal function were then monitored for up to 8 h post-treatment. The peak diuretic response occurred 2 h (99.4 ± 14.8 mL/h) after acetazolamide, at which stage cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ were not significantly different from their baseline levels. The peak diuretic response to furosemide occurred at 1 h (196.5 ± 12.3 mL/h) post-treatment but there were no significant changes in cortical and medullary tissue oxygenation during this period. However, cortical tissue P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fell from 40.1 ± 3.8 mmHg at baseline to 17.2 ± 4.4 mmHg at 3 h and to 20.5 ± 5.3 mmHg at 6 h after furosemide administration. Amiloride did not produce a diuretic response and was not associated with significant changes in cortical or medullary tissue oxygenation. In conclusion, clinically relevant doses of diuretic agents did not improve regional renal tissue oxygenation in healthy animals during the 8 h experimentation period. On the contrary, rebound renal cortical hypoxia may develop after dissipation of furosemide-induced diuresis.


Assuntos
Acetazolamida , Amilorida , Diuréticos , Furosemida , Córtex Renal , Medula Renal , Animais , Furosemida/farmacologia , Acetazolamida/farmacologia , Amilorida/farmacologia , Diuréticos/farmacologia , Ovinos , Feminino , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Oxigênio/metabolismo , Hemodinâmica/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos
2.
Clin Exp Pharmacol Physiol ; 51(4): e13852, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452756

RESUMO

We tested whether the brain and kidney respond differently to cardiopulmonary bypass (CPB) and to changes in perfusion conditions during CPB. Therefore, in ovine CPB, we assessed regional cerebral oxygen saturation (rSO2 ) by near-infrared spectroscopy and renal cortical and medullary tissue oxygen tension (PO2 ), and, in some protocols, brain tissue PO2 , by phosphorescence lifetime oximetry. During CPB, rSO2 correlated with mixed venous SO2 (r = 0.78) and brain tissue PO2 (r = 0.49) when arterial PO2 was varied. During the first 30 min of CPB, brain tissue PO2 , rSO2 and renal cortical tissue PO2 did not fall, but renal medullary tissue PO2 did. Nevertheless, compared with stable anaesthesia, during stable CPB, rSO2 (66.8 decreasing to 61.3%) and both renal cortical (90.8 decreasing to 43.5 mm Hg) and medullary (44.3 decreasing to 19.2 mm Hg) tissue PO2 were lower. Both rSO2 and renal PO2 increased when pump flow was increased from 60 to 100 mL kg-1 min-1 at a target arterial pressure of 70 mm Hg. They also both increased when pump flow and arterial pressure were increased simultaneously. Neither was significantly altered by partially pulsatile flow. The vasopressor, metaraminol, dose-dependently decreased rSO2 , but increased renal cortical and medullary PO2 . Increasing blood haemoglobin concentration increased rSO2 , but not renal PO2 . We conclude that both the brain and kidney are susceptible to hypoxia during CPB, which can be alleviated by increasing pump flow, even without increasing arterial pressure. However, increasing blood haemoglobin concentration increases brain, but not kidney oxygenation, whereas vasopressor support with metaraminol increases kidney, but not brain oxygenation.


Assuntos
Ponte Cardiopulmonar , Metaraminol , Ovinos , Animais , Ponte Cardiopulmonar/efeitos adversos , Oxigênio , Rim , Vasoconstritores , Perfusão , Hemoglobinas
3.
Acta Physiol (Oxf) ; 239(1): e14025, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37548350

RESUMO

AIM: Renal medullary hypoperfusion and hypoxia precede acute kidney injury (AKI) in ovine sepsis. Oxidative/nitrosative stress, inflammation, and impaired nitric oxide generation may contribute to such pathophysiology. We tested whether the antioxidant and anti-inflammatory drug, tempol, may modify these responses. METHODS: Following unilateral nephrectomy, we inserted renal arterial catheters and laser-Doppler/oxygen-sensing probes in the renal cortex and medulla. Noanesthetized sheep were administered intravenous (IV) Escherichia coli and, at sepsis onset, IV tempol (IVT; 30 mg kg-1 h-1 ), renal arterial tempol (RAT; 3 mg kg-1 h-1 ), or vehicle. RESULTS: Septic sheep receiving vehicle developed renal medullary hypoperfusion (76 ± 16% decrease in perfusion), hypoxia (70 ± 13% decrease in oxygenation), and AKI (87 ± 8% decrease in creatinine clearance) with similar changes during IVT. However, RAT preserved medullary perfusion (1072 ± 307 to 1005 ± 271 units), oxygenation (46 ± 8 to 43 ± 6 mmHg), and creatinine clearance (61 ± 10 to 66 ± 20 mL min-1 ). Plasma, renal medullary, and cortical tissue malonaldehyde and medullary 3-nitrotyrosine decreased significantly with sepsis but were unaffected by IVT or RAT. Consistent with decreased oxidative/nitrosative stress markers, cortical and medullary nuclear factor-erythroid-related factor-2 increased significantly and were unaffected by IVT or RAT. However, RAT prevented sepsis-induced overexpression of cortical tissue tumor necrosis factor alpha (TNF-α; 51 ± 16% decrease; p = 0.003) and medullary Thr-495 phosphorylation of endothelial nitric oxide synthase (eNOS; 63 ± 18% decrease; p = 0.015). CONCLUSIONS: In ovine Gram-negative sepsis, renal arterial infusion of tempol prevented renal medullary hypoperfusion and hypoxia and AKI and decreased TNF-α expression and uncoupling of eNOS. However, it did not affect markers of oxidative/nitrosative stress, which were significantly decreased by Gram-negative sepsis.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Ovinos , Fator de Necrose Tumoral alfa , Creatinina , Circulação Renal/fisiologia , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Hipóxia/metabolismo , Sepse/metabolismo , Escherichia coli
4.
Anesth Analg ; 136(4): 802-813, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928157

RESUMO

BACKGROUND: Intraoperative inflammation may contribute to postoperative neurocognitive disorders after cardiac surgery requiring cardiopulmonary bypass (CPB). However, the relative contributions of general anesthesia (GA), surgical site injury, and CPB are unclear. METHODS: In adult female sheep, we investigated (1) the temporal profile of proinflammatory and anti-inflammatory cytokines and (2) the extent of microglia activation across major cerebral cortical regions during GA and surgical trauma with and without CPB (N = 5/group). Sheep were studied while conscious, during GA and surgical trauma, with and without CPB. RESULTS: Plasma tumor necrosis factor-alpha (mean [95% confidence intervals], 3.7 [2.5-4.9] vs 1.6 [0.8-2.3] ng/mL; P = .0004) and interleukin-6 levels (4.4 [3.0-5.8] vs 1.6 [0.8-2.3] ng/mL; P = .029) were significantly higher at 1.5 hours, with a further increase in interleukin-6 at 3 hours (7.0 [3.7-10.3] vs 1.8 [1.1-2.6] ng/mL; P < .0001) in animals undergoing CPB compared with those that did not. Although cerebral oxygen saturation was preserved throughout CPB, there was pronounced neuroinflammation as characterized by greater microglia circularity within the frontal cortex of sheep that underwent CPB compared with those that did not (0.34 [0.32-0.37] vs 0.30 [0.29-0.32]; P = .029). Moreover, microglia had fewer branches within the parietal (7.7 [6.5-8.9] vs 10.9 [9.4-12.5]; P = .001) and temporal (7.8 [7.2-8.3] vs 9.9 [8.2-11.7]; P = .020) cortices in sheep that underwent CPB compared with those that did not. CONCLUSIONS: CPB enhanced the release of proinflammatory cytokines beyond that initiated by GA and surgical trauma. This systemic inflammation was associated with microglial activation across 3 major cerebral cortical regions, with a phagocytic microglia phenotype within the frontal cortex, and an inflammatory microglia phenotype within the parietal and temporal cortices. These data provide direct histopathological evidence of CPB-induced neuroinflammation in a large animal model and provide further mechanistic data on how CPB-induced cerebral inflammation might drive postoperative neurocognitive disorders in humans.


Assuntos
Ponte Cardiopulmonar , Doenças Neuroinflamatórias , Animais , Feminino , Ponte Cardiopulmonar/efeitos adversos , Citocinas , Interleucina-6 , Doenças Neuroinflamatórias/etiologia , Ovinos , Modelos Animais de Doenças
6.
Crit Care ; 26(1): 389, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527088

RESUMO

Acute kidney injury (AKI) is common in the critically ill. Inadequate renal medullary tissue oxygenation has been linked to its pathogenesis. Moreover, renal medullary tissue hypoxia can be detected before biochemical evidence of AKI in large mammalian models of critical illness. This justifies medullary hypoxia as a pathophysiological biomarker for early detection of impending AKI, thereby providing an opportunity to avert its evolution. Evidence from both animal and human studies supports the view that non-invasively measured bladder urinary oxygen tension (PuO2) can provide a reliable estimate of renal medullary tissue oxygen tension (tPO2), which can only be measured invasively. Furthermore, therapies that modify medullary tPO2 produce corresponding changes in bladder PuO2. Clinical studies have shown that bladder PuO2 correlates with cardiac output, and that it increases in response to elevated cardiopulmonary bypass (CPB) flow and mean arterial pressure. Clinical observational studies in patients undergoing cardiac surgery involving CPB have shown that bladder PuO2 has prognostic value for subsequent AKI. Thus, continuous bladder PuO2 holds promise as a new clinical tool for monitoring the adequacy of renal medullary oxygenation, with its implications for the recognition and prevention of medullary hypoxia and thus AKI.


Assuntos
Injúria Renal Aguda , Estado Terminal , Animais , Humanos , Estado Terminal/terapia , Bexiga Urinária/patologia , Oxigênio , Ponte Cardiopulmonar/efeitos adversos , Hipóxia , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Mamíferos
7.
Acta Physiol (Oxf) ; 236(1): e13860, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862484

RESUMO

AIM: Cardiac surgery requiring cardiopulmonary bypass (CPB) can result in renal and cerebral injury. Intraoperative tissue hypoxia could contribute to such organ injury. Hypothermia, however, may alleviate organ hypoxia. Therefore, we tested whether moderate hypothermia (30°C) improves cerebral and renal tissue perfusion and oxygenation during ovine CPB. METHODS: Ten sheep were studied while conscious, under stable anesthesia, and during 3 h of CPB. In a randomized within-animal cross-over design, five sheep commenced CPB at a target body temperature of 30°C (moderate hypothermia). After 90 min, the body temperature was increased to 36°C (standard procedure). The remaining five sheep were randomized to the opposite order of target body temperature. RESULTS: Compared with the standard procedure, moderately hypothermic CPB reduced renal oxygen delivery (-34.8% ± 19.6%, P = 0.003) and renal oxygen consumption (-42.7% ± 35.2%, P = 0.04). Nevertheless, moderately hypothermic CPB did not significantly alter either renal cortical or medullary tissue PO2 . Moderately hypothermic CPB also did not significantly alter cerebral perfusion, cerebral tissue PO2 , or cerebral oxygen saturation compared with the standard procedure. Compared with the anesthetized state, the standard procedure reduced renal medullary PO2 (-21.0 ± 13.8 mmHg, P = 0.014) and cerebral oxygen saturation (65.0% ± 7.0% to 55.4% ± 9.6%, P = 0.022) but did not significantly alter either renal cortical or cerebral PO2 . CONCLUSION: Ovine experimental CPB leads to renal medullary tissue hypoxia. Moderately hypothermic CPB did not improve cerebral or renal tissue oxygenation. In the kidney, this is probably because renal tissue oxygen consumption is matched by reduced renal oxygen delivery.


Assuntos
Hipotermia Induzida , Hipotermia , Animais , Encéfalo , Ponte Cardiopulmonar/efeitos adversos , Estudos Cross-Over , Hemodinâmica , Hipotermia/metabolismo , Hipotermia Induzida/métodos , Hipóxia/metabolismo , Medula Renal/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio , Ovinos
8.
Perfusion ; 37(6): 624-632, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33977810

RESUMO

INTRODUCTION: The renal medulla is susceptible to hypoxia during cardiopulmonary bypass (CPB), which may contribute to the development of acute kidney injury. But the speed of onset of renal medullary hypoxia remains unknown. METHODS: We continuously measured renal medullary oxygen tension (MPO2) in 24 sheep, and urinary PO2 (UPO2) as an index of MPO2 in 92 patients, before and after induction of CPB. RESULTS: In laterally recumbent sheep with a right thoracotomy (n = 20), even before CPB commenced MPO2 fell from (mean ± SEM) 52 ± 4 to 41 ±5 mmHg simultaneously with reduced arterial pressure (from 108 ± 5 to 88 ± 5 mmHg). In dorsally recumbent sheep with a medial sternotomy (n = 4), MPO2 was even more severely reduced (to 12 ± 12 mmHg) before CPB. In laterally recumbent sheep in which a crystalloid prime was used (n = 7), after commencing CPB, MPO2 fell abruptly to 24 ±6 mmHg within 20-30 minutes. MPO2 during CPB was not improved by adding donor blood to the prime (n = 13). In patients undergoing cardiac surgery, UPO2 fell by 4 ± 1 mmHg and mean arterial pressure fell by 7 ± 1 mmHg during the 30 minutes before CPB. UPO2 then fell by a further 12 ± 2 mmHg during the first 30 minutes of CPB but remained relatively stable for the remaining 24 minutes of observation. CONCLUSIONS: Renal medullary hypoxia is an early event during CPB. It starts to develop even before CPB, presumably due to a pressure-dependent decrease in renal blood flow. Medullary hypoxia during CPB appears to be promoted by hypotension and is not ameliorated by increasing blood hemoglobin concentration.


Assuntos
Injúria Renal Aguda , Ponte Cardiopulmonar , Animais , Humanos , Hipóxia , Medula Renal/irrigação sanguínea , Oxigênio , Ovinos
9.
Compr Physiol ; 12(1): 2799-2834, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964119

RESUMO

Cardiac surgery-associated acute kidney injury and brain injury remain common despite ongoing efforts to improve both the equipment and procedures deployed during cardiopulmonary bypass (CPB). The pathophysiology of injury of the kidney and brain during CPB is not completely understood. Nevertheless, renal (particularly in the medulla) and cerebral hypoxia and inflammation likely play critical roles. Multiple practical factors, including depth and mode of anesthesia, hemodilution, pump flow, and arterial pressure can influence oxygenation of the brain and kidney during CPB. Critically, these factors may have differential effects on these two vital organs. Systemic inflammatory pathways are activated during CPB through activation of the complement system, coagulation pathways, leukocytes, and the release of inflammatory cytokines. Local inflammation in the brain and kidney may be aggravated by ischemia (and thus hypoxia) and reperfusion (and thus oxidative stress) and activation of resident and infiltrating inflammatory cells. Various strategies, including manipulating perfusion conditions and administration of pharmacotherapies, could potentially be deployed to avoid or attenuate hypoxia and inflammation during CPB. Regarding manipulating perfusion conditions, based on experimental and clinical data, increasing standard pump flow and arterial pressure during CPB appears to offer the best hope to avoid hypoxia and injury, at least in the kidney. Pharmacological approaches, including use of anti-inflammatory agents such as dexmedetomidine and erythropoietin, have shown promise in preclinical models but have not been adequately tested in human trials. However, evidence for beneficial effects of corticosteroids on renal and neurological outcomes is lacking. © 2021 American Physiological Society. Compr Physiol 11:1-36, 2021.


Assuntos
Ponte Cardiopulmonar , Hipóxia Encefálica , Ponte Cardiopulmonar/efeitos adversos , Humanos , Hipóxia , Inflamação , Rim
10.
Acta Physiol (Oxf) ; 231(4): e13596, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347356

RESUMO

AIM: Renal tissue hypoxia during cardiopulmonary bypass could contribute to the pathophysiology of acute kidney injury. We tested whether renal tissue hypoxia can be alleviated during cardiopulmonary bypass by the combined increase in target pump flow and mean arterial pressure. METHODS: Cardiopulmonary bypass was established in eight instrumented sheep under isoflurane anaesthesia, at a target continuous pump flow of 80 mL·kg-1 min-1 and mean arterial pressure of 65 mmHg. We then tested the effects of simultaneously increasing target pump flow to 104 mL·kg-1 min-1 and mean arterial pressure to 80 mmHg with metaraminol (total dose 0.25-3.75 mg). We also tested the effects of transitioning from continuous flow to partially pulsatile flow (pulse pressure ~15 mmHg). RESULTS: Compared with conscious sheep, at the lower target pump flow and mean arterial pressure, cardiopulmonary bypass was accompanied by reduced renal blood flow (6.8 ± 1.2 to 1.95 ± 0.76 mL·min-1 kg-1) and renal oxygen delivery (0.91 ± 0.18 to 0.24 ± 0.11 mL·O2 min-1 kg-1). There were profound reductions in cortical oxygen tension (PO2) (33 ± 13 to 6 ± 6 mmHg) and medullary PO2 (31 ± 12 to 8 ± 8 mmHg). Increasing target pump flow and mean arterial pressure increased renal blood flow (to 2.6 ± 1.0 mL·min-1 kg-1) and renal oxygen delivery (to 0.32 ± 0.13 mL·O2 min-1kg-1) and returned cortical PO2 to 58 ± 60 mmHg and medullary PO2 to 28 ± 16 mmHg; levels similar to those of conscious sheep. Partially pulsatile pump flow had no significant effects on renal perfusion or oxygenation. CONCLUSIONS: Renal hypoxia during experimental CPB can be corrected by increasing target pump flow and mean arterial pressure within a clinically feasible range.


Assuntos
Pressão Arterial , Ponte Cardiopulmonar , Animais , Hipóxia , Oxigênio , Circulação Renal , Ovinos
11.
Br J Pharmacol ; 178(6): 1407-1425, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450087

RESUMO

Agonists of α2 -adrenoceptors are increasingly being used for the provision of comfort, sedation and the management of delirium in critically ill patients, with and without sepsis. In this context, increased sympathetic and inflammatory activity are common pathophysiological features linked to multi-organ dysfunction, particularly in patients with sepsis or those undergoing cardiac surgery requiring cardiopulmonary bypass. Experimental and clinical studies support the notion that the α2 -adrenoceptor agonists, dexmedetomidine and clonidine, mitigate sympathetic and inflammatory overactivity in sepsis and cardiac surgery requiring cardiopulmonary bypass. These effects can protect vital organs, including the cardiovascular system, kidneys, heart and brain. We review the pharmacodynamic mechanisms by which α2 -adrenoceptor agonists might mitigate multi-organ dysfunction arising from pathophysiological conditions associated with excessive inflammatory and adrenergic stress in experimental studies. We also outline recent clinical trials that have examined the use of dexmedetomidine in critically ill patients with and without sepsis and in patients undergoing cardiac surgery.


Assuntos
Dexmedetomidina , Sepse , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Agonistas alfa-Adrenérgicos , Clonidina , Estado Terminal , Dexmedetomidina/uso terapêutico , Humanos , Receptores Adrenérgicos alfa 2 , Sepse/tratamento farmacológico
12.
Acta Physiol (Oxf) ; 231(3): e13583, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33222404

RESUMO

AIM: Blood transfusion may improve renal oxygenation during cardiopulmonary bypass (CPB). In an ovine model of experimental CPB, we tested whether increasing blood haemoglobin concentration [Hb] from ~7 g dL-1 to ~9 g dL-1 improves renal tissue oxygenation. METHODS: Ten sheep were studied while conscious, under stable isoflurane anaesthesia, and during 3 hours of CPB. In a randomized cross-over design, 5 sheep commenced bypass at a high target [Hb], achieved by adding 600 mL donor blood to the priming solution. After 90 minutes of CPB, PlasmaLyte® was added to the blood reservoir to achieve low target [Hb]. For the other 5 sheep, no blood was added to the prime, but after 90 minutes of CPB, 800-900 mL of donor blood was given to achieve a high target [Hb]. RESULTS: Overall, CPB was associated with marked reductions in renal oxygen delivery (-50 ± 12%, mean ± 95% confidence interval) and medullary tissue oxygen tension (PO2 , -54 ± 29%). Renal fractional oxygen extraction was 17 ± 10% less during CPB at high [Hb] than low [Hb] (P = .04). Nevertheless, no increase in tissue PO2 in either the renal medulla (0 ± 6 mmHg change, P > .99) or cortex (-19 ± 13 mmHg change, P = .08) was detected with high [Hb]. CONCLUSIONS: In experimental CPB blood transfusion to increase Hb concentration from ~7 g dL-1 to ~9 g dL-1 did not improve renal cortical or medullary tissue PO2 even though it decreased whole kidney oxygen extraction.


Assuntos
Ponte Cardiopulmonar , Medula Renal , Animais , Estudos Cross-Over , Hemodinâmica , Hemoglobinas , Rim , Oxigênio , Ovinos
13.
Crit Care Resusc ; 22(3): 227-236, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32900329

RESUMO

OBJECTIVE: The systemic inflammatory response syndrome (SIRS) is a dysregulated response that contributes to critical illness. Adjunctive acetylsalicylic acid (ASA) treatment may offer beneficial effects by increasing the synthesis of specialised proresolving mediators (a subset of polyunsaturated fatty acid-derived lipid mediators). DESIGN: Pilot, feasibility, multicentre, double-blind, randomised, placebo-controlled trial. SETTING: Four interdisciplinary intensive care units (ICUs) in Australia. PARTICIPANTS: Critically ill patients with SIRS. INTERVENTIONS: ASA 100 mg 12-hourly or placebo, administered within 24 hours of ICU admission and continued until ICU day 7, discharge or death, whichever came first. MAIN OUTCOME MEASURES: Interleukin-6 (IL-6) serum concentration at 48 hours after randomisation and, in a prespecified subgroup of patients, serum lipid mediator concentrations measured by mass spectrometry. RESULTS: The trial was discontinued in December 2017 due to slow recruitment and after the inclusion of 48 patients. Compared with placebo, ASA did not decrease IL-6 serum concentration at 48 hours. In the 32 patients with analysis of lipid mediators, low-dose ASA increased the concentration of 15-hydroxyeicosatetraenoic acid, a proresolving precursor of lipoxin A4, and reduced the concentration of the proinflammatory cytochrome P-dependent mediators 17-HETE (hydroxyeicosatetraenoic acid), 18-HETE and 20-HETE. In the eicosapentaenoic acid pathway, ASA significantly increased the concentration of the anti-inflammatory mediators 17,18-DiHETE (dihydroxyeicosatetraenoic acid) and 14,15-DiHETE. CONCLUSIONS: In ICU patients with SIRS, low-dose ASA did not significantly alter serum IL-6 concentrations, but it did affect plasma concentrations of certain lipid mediators. The ability to measure lipid mediators in clinical samples and to monitor the effect of ASA on their levels unlocks a potential area of biological investigation in critical care. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ACTRN 12614001165673).


Assuntos
Aspirina/administração & dosagem , Estado Terminal , Citocinas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Austrália , Método Duplo-Cego , Estudos de Viabilidade , Humanos , Interleucina-6/sangue , Lipídeos , Resultado do Tratamento
14.
Sci Rep ; 10(1): 15009, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929135

RESUMO

A neural reflex mediated by the splanchnic sympathetic nerves regulates systemic inflammation in negative feedback fashion, but its consequences for host responses to live infection are unknown. To test this, conscious instrumented sheep were infected intravenously with live E. coli bacteria and followed for 48 h. A month previously, animals had undergone either bilateral splanchnic nerve section or a sham operation. As established for rodents, sheep with cut splanchnic nerves mounted a stronger systemic inflammatory response: higher blood levels of tumor necrosis factor alpha and interleukin-6 but lower levels of the anti-inflammatory cytokine interleukin-10, compared with sham-operated animals. Sequential blood cultures revealed that most sham-operated sheep maintained high circulating levels of live E. coli throughout the 48-h study period, while all sheep without splanchnic nerves rapidly cleared their bacteraemia and recovered clinically. The sympathetic inflammatory reflex evidently has a profound influence on the clearance of systemic bacterial infection.


Assuntos
Bacteriemia/fisiopatologia , Nervos Esplâncnicos/fisiologia , Sistema Nervoso Simpático , Animais , Pressão Arterial , Bacteriemia/sangue , Bacteriemia/microbiologia , Carga Bacteriana , Catecolaminas/sangue , Citocinas/sangue , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/fisiopatologia , Feminino , Reflexo/fisiologia , Ovinos , Nervos Esplâncnicos/cirurgia , Sistema Nervoso Simpático/microbiologia , Sistema Nervoso Simpático/fisiologia
15.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R206-R213, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31823674

RESUMO

Renal medullary hypoxia may contribute to the pathophysiology of acute kidney injury, including that associated with cardiac surgery requiring cardiopulmonary bypass (CPB). When performed under volatile (isoflurane) anesthesia in sheep, CPB causes renal medullary hypoxia. There is evidence that total intravenous anesthesia (TIVA) may preserve renal perfusion and renal oxygen delivery better than volatile anesthesia. Therefore, we assessed the effects of CPB on renal perfusion and oxygenation in sheep under propofol/fentanyl-based TIVA. Sheep (n = 5) were chronically instrumented for measurement of whole renal blood flow and cortical and medullary perfusion and oxygenation. Five days later, these variables were monitored under TIVA using propofol and fentanyl and then on CPB at a pump flow of 80 mL·kg-1·min-1 and target mean arterial pressure of 70 mmHg. Under anesthesia, before CPB, renal blood flow was preserved under TIVA (mean difference ± SD from conscious state: -16 ± 14%). However, during CPB renal blood flow was reduced (-55 ± 13%) and renal medullary tissue became hypoxic (-20 ± 13 mmHg versus conscious sheep). We conclude that renal perfusion and medullary oxygenation are well preserved during TIVA before CPB. However, CPB under TIVA leads to renal medullary hypoxia, of a similar magnitude to that we observed previously under volatile (isoflurane) anesthesia. Thus use of propofol/fentanyl-based TIVA may not be a useful strategy to avoid renal medullary hypoxia during CPB.


Assuntos
Injúria Renal Aguda/etiologia , Anestesia Intravenosa , Ponte Cardiopulmonar/efeitos adversos , Hemodinâmica , Hipóxia/etiologia , Medula Renal/irrigação sanguínea , Oxigênio/sangue , Propofol/administração & dosagem , Circulação Renal , Injúria Renal Aguda/sangue , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/prevenção & controle , Anestésicos Intravenosos/administração & dosagem , Animais , Biomarcadores/sangue , Fentanila/administração & dosagem , Hipóxia/sangue , Hipóxia/fisiopatologia , Hipóxia/prevenção & controle , Modelos Animais , Fatores de Proteção , Fatores de Risco , Carneiro Doméstico , Fatores de Tempo
16.
Acta Physiol (Oxf) ; 227(1): e13294, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31066975

RESUMO

AIM: Urinary oxygen tension (uPO2 ) may provide an estimate of renal medullary PO2 (mPO2 ) and thus risk of acute kidney injury (AKI). We assessed the potential for variations in urine flow and arterial PO2 (aPO2 ) to confound these estimates. METHODS: In 28 sheep urine flow, uPO2 , aPO2 and mPO2 were measured during development of septic AKI. In 65 human patients undergoing cardiac surgery requiring cardiopulmonary bypass (CPB) uPO2 and aPO2 were measured continuously during CPB, and in a subset of 20 patients, urine flow was estimated every 5 minutes. RESULTS: In conscious sheep breathing room air, uPO2 was more closely correlated with mPO2 than with aPO2 or urine flow. The difference between mPO2 and uPO2 varied little with urine flow or aPO2 . In patients, urine flow increased abruptly from 3.42 ± 0.29 mL min-1 to 6.94 ± 0.26 mL min-1 upon commencement of CPB, usually coincident with reduced uPO2 . During hyperoxic CPB high values of uPO2 were often observed at low urine flow. Low urinary PO2 during CPB (<10 mm Hg at any time during CPB) was associated with greater (4.5-fold) risk of AKI. However, low urine flow during CPB was not significantly associated with risk of AKI. CONCLUSIONS: uPO2 provides a robust estimate of mPO2 , but this relationship is confounded by the simultaneous presence of systemic hyperoxia and low urine flow. Urine flow increases and uPO2 decreases during CPB. Thus, CPB is probably the best time to use uPO2 to detect renal medullary hypoxia and risk of post-operative AKI.


Assuntos
Injúria Renal Aguda/urina , Medula Renal/metabolismo , Oxigênio/urina , Injúria Renal Aguda/etiologia , Animais , Escherichia coli , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/veterinária , Feminino , Modelos Biológicos , Sepse/complicações , Sepse/veterinária , Ovinos
17.
Kidney Int ; 95(6): 1338-1346, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005272

RESUMO

Renal medullary hypoxia may contribute to cardiac surgery-associated acute kidney injury (AKI). However, the effects of cardiopulmonary bypass (CPB) on medullary oxygenation are poorly understood. Here we tested whether CPB causes medullary hypoxia and whether medullary oxygenation during CPB can be improved by increasing pump flow or mean arterial pressure (MAP). Twelve sheep were instrumented to measure whole kidney, medullary, and cortical blood flow and oxygenation. Five days later, under isoflurane anesthesia, CPB was initiated at a pump flow of 80 mL kg-1min-1 and target MAP of 70 mm Hg. Pump flow was then set at 60 and 100 mL kg-1min-1, while MAP was maintained at approximately 70 mm Hg. MAP was then increased by vasopressor (metaraminol, 0.2-0.6 mg/min) infusion at a pump flow of 80 mL kg-1min-1. CPB at 80 mL kg-1min-1 reduced renal blood flow (RBF), -61% less than the conscious state, perfusion in the cortex (-44%) and medulla (-40%), and medullary Po2 from 43 to 27 mm Hg. Decreasing pump flow from 80 to 60 mL kg-1min-1 further decreased RBF (-16%) and medullary Po2 from 25 to 14 mm Hg. Increasing pump flow from 80 to 100 mL kg-1min-1 increased RBF (17%) and medullary Po2 from 20 to 29 mm Hg. Metaraminol (0.2 mg/min) increased MAP from 63 to 90 mm Hg, RBF (47%), and medullary Po2 from 19 to 39 mm Hg. Thus, the renal medulla is susceptible to hypoxia during CPB, but medullary oxygenation can be improved by increasing pump flow or increasing target MAP by infusion of metaraminol.


Assuntos
Injúria Renal Aguda/prevenção & controle , Ponte Cardiopulmonar/efeitos adversos , Medula Renal/irrigação sanguínea , Complicações Pós-Operatórias/prevenção & controle , Vasoconstritores/administração & dosagem , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Pressão Arterial/efeitos dos fármacos , Ponte Cardiopulmonar/instrumentação , Ponte Cardiopulmonar/métodos , Hipóxia Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Medula Renal/patologia , Metaraminol/administração & dosagem , Oxigênio/metabolismo , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/patologia , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Ovinos
18.
Crit Care Med ; 44(9): e897-903, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27058465

RESUMO

OBJECTIVE: The histopathologic changes associated with septic acute kidney injury are poorly understood, in part, because of the lack of biopsy data in humans. Animal models of septic acute kidney injury may help define such changes. Therefore, we performed a systematic review of the histopathologic changes found in modern experimental septic acute kidney injury models. DATA SOURCES: MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature, and PubMed (from January 2007 to February 2015). STUDY SELECTION: We reviewed experimental studies reporting findings on the histopathology of contemporary experimental septic acute kidney injury. DATA EXTRACTION: We focused on the presence or the absence of acute tubular necrosis, tubular cell apoptosis, and other nonspecific findings. DATA SYNTHESIS: We identified 102 studies in 1,059 animals. Among the 1,059 animals, 53 (5.0%) did not have any renal histopathologic changes, but acute tubular necrosis was found in 184 (17.4%). The prevalence of acute tubular necrosis was not related to animal size or model of sepsis and was only found in models with low cardiac output and decreased renal blood flow (p < 0.0001). Only 21 studies (170 animals) assessed the prevalence of tubular cell apoptosis, which was reported in 158 animals (92.9%). The prevalence of tubular cell apoptosis was significantly higher in studies using small animals (p < 0.0001) and in peritonitis models (p < 0.0001). Simultaneous acute tubular necrosis and tubular cell apoptosis was rare (55 animals [32.4%]) and only seen with decreased cardiac output and renal blood flow. Nonspecific changes (vacuolization of tubular cells, loss of brush border, and tubular cell swelling) were each observed in 423 (39.9%), 250 (23.6%) and 243 (22.9%) animals, respectively. CONCLUSIONS: In models of experimental septic acute kidney injury in contemporary articles, acute tubular necrosis was relatively uncommon and, when present, reflected the presence of an associated low cardiac output or low renal blood flow syndrome. Tubular cell apoptosis seemed frequent in the few studies in which it was investigated. Nonspecific morphologic changes, however, were the most common histopathologic findings.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Sepse/complicações , Sepse/patologia , Animais , Modelos Animais de Doenças
19.
Crit Care ; 18(6): 610, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25413250

RESUMO

INTRODUCTION: Activation of the sympathetic nervous system has beneficial cardiovascular effects in sepsis, but there is also evidence that sympatholytics have beneficial actions in sepsis. We therefore determined the effect of selective ß1-adrenoceptor blockade on cardiac and renal function and cytokine release in ovine hyperdynamic sepsis. METHODS: Hyperdynamic sepsis was induced by infusion of live E. coli for 24 hours in nine conscious sheep instrumented with flow probes on the pulmonary and left renal artery. Cardiovascular and renal function and levels of plasma cytokines were determined in a control group and during selective ß1-adrenoceptor blockade with atenolol (10 mg intravenous bolus then 0.125 mg/kg/h) from 8 to 24 hours of sepsis. RESULTS: Hyperdynamic sepsis was characterized by hypotension with increases in cardiac output (CO), heart rate (HR) and renal blood flow (RBF), and acute kidney injury. Atenolol caused sustained reductions in HR (P < 0.001) and CO (P < 0.001). Despite the lower CO the sepsis-induced fall in mean arterial pressure (MAP) was similar in both groups. The sepsis-induced increase in RBF, decrease in renal function and increase in arterial lactate were unaffected by atenolol. Sepsis increased plasma levels of tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and IL-10. Atenolol caused a further increase in IL-10, but did not affect levels of TNF-α or IL-6. CONCLUSIONS: In sepsis, selective ß1-adrenoceptor blockade reduced CO, but not MAP. During sepsis, atenolol did not alter the development of acute kidney injury or the levels of pro-inflammatory cytokines, but enhanced the release of IL-10. Atenolol appears safe in sepsis, has no deleterious cardiovascular or renal effects, and has an anti-inflammatory effect.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/uso terapêutico , Citocinas/sangue , Frequência Cardíaca/efeitos dos fármacos , Rim/efeitos dos fármacos , Sepse/sangue , Sepse/tratamento farmacológico , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Atenolol/farmacologia , Atenolol/uso terapêutico , Débito Cardíaco/efeitos dos fármacos , Débito Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Rim/irrigação sanguínea , Rim/fisiologia , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Sepse/fisiopatologia , Ovinos , Resultado do Tratamento
20.
Am J Physiol Renal Physiol ; 306(8): F791-800, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24500691

RESUMO

Epidemiological studies reveal that children born with a solitary functioning kidney (SFK) have a greater predisposition to develop renal insufficiency and hypertension in early adulthood. A congenital SFK is present in patients with unilateral renal agenesis or unilateral multicystic kidney dysplasia, leading to both structural and functional adaptations in the remaining kidney, which act to mitigate the reductions in glomerular filtration rate and sodium excretion that would otherwise ensue. To understand the mechanisms underlying the early development of renal insufficiency in children born with a SFK, we established a model of fetal uninephrectomy (uni-x) in sheep, a species that similar to humans complete nephrogenesis before birth. This model results in a 30% reduction in nephron number rather than 50%, due to compensatory nephrogenesis in the remaining kidney. Similar to children with a congenital SFK, uni-x sheep demonstrate a progressive increase in arterial pressure and a loss of renal function with aging. This review summarizes the compensatory changes in renal hemodynamics and tubular sodium handling that drive impairments in renal function and highlights the existence of sex differences in the functional adaptations following the loss of a kidney during fetal life.


Assuntos
Rim/anormalidades , Rim/embriologia , Anormalidades Urogenitais/fisiopatologia , Adulto , Envelhecimento , Animais , Criança , Feminino , Taxa de Filtração Glomerular , Humanos , Hipertensão/etiologia , Lactente , Rim/fisiopatologia , Capacidade de Concentração Renal/fisiologia , Nefropatias/fisiopatologia , Neoplasias Renais/cirurgia , Transplante de Rim/efeitos adversos , Masculino , Modelos Animais , Nefrectomia/efeitos adversos , Néfrons/embriologia , Óxido Nítrico/fisiologia , Ratos , Fatores Sexuais , Ovinos/cirurgia , Tumor de Wilms/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA