Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 165(2): 429-444.e15, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36906044

RESUMO

BACKGROUND & AIMS: Patients with colon cancer with liver metastases may be cured with surgery, but the presence of additional lung metastases often precludes curative treatment. Little is known about the processes driving lung metastasis. This study aimed to elucidate the mechanisms governing lung vs liver metastasis formation. METHODS: Patient-derived organoid (PDO) cultures were established from colon tumors with distinct patterns of metastasis. Mouse models recapitulating metastatic organotropism were created by implanting PDOs into the cecum wall. Optical barcoding was applied to trace the origin and clonal composition of liver and lung metastases. RNA sequencing and immunohistochemistry were used to identify candidate determinants of metastatic organotropism. Genetic, pharmacologic, in vitro, and in vivo modeling strategies identified essential steps in lung metastasis formation. Validation was performed by analyzing patient-derived tissues. RESULTS: Cecum transplantation of 3 distinct PDOs yielded models with distinct metastatic organotropism: liver only, lung only, and liver and lung. Liver metastases were seeded by single cells derived from select clones. Lung metastases were seeded by polyclonal clusters of tumor cells entering the lymphatic vasculature with very limited clonal selection. Lung-specific metastasis was associated with high expression of desmosome markers, including plakoglobin. Plakoglobin deletion abrogated tumor cell cluster formation, lymphatic invasion, and lung metastasis formation. Pharmacologic inhibition of lymphangiogenesis attenuated lung metastasis formation. Primary human colon, rectum, esophagus, and stomach tumors with lung metastases had a higher N-stage and more plakoglobin-expressing intra-lymphatic tumor cell clusters than those without lung metastases. CONCLUSIONS: Lung and liver metastasis formation are fundamentally distinct processes with different evolutionary bottlenecks, seeding entities, and anatomic routing. Polyclonal lung metastases originate from plakoglobin-dependent tumor cell clusters entering the lymphatic vasculature at the primary tumor site.


Assuntos
Neoplasias do Colo , Neoplasias Hepáticas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , gama Catenina/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias do Colo/genética , Neoplasias Hepáticas/patologia
2.
Nat Commun ; 13(1): 4443, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927254

RESUMO

A significant proportion of colorectal cancer (CRC) patients develop peritoneal metastases (PM) in the course of their disease. PMs are associated with a poor quality of life, significant morbidity and dismal disease outcome. To improve care for this patient group, a better understanding of the molecular characteristics of CRC-PM is required. Here we present a comprehensive molecular characterization of a cohort of 52 patients. This reveals that CRC-PM represent a distinct CRC molecular subtype, CMS4, but can be further divided in three separate categories, each presenting with unique features. We uncover that the CMS4-associated structural protein Moesin plays a key role in peritoneal dissemination. Finally, we define specific evolutionary features of CRC-PM which indicate that polyclonal metastatic seeding underlies these lesions. Together our results suggest that CRC-PM should be perceived as a distinct disease entity.


Assuntos
Neoplasias Colorretais , Segunda Neoplasia Primária , Neoplasias Peritoneais , Neoplasias Colorretais/patologia , Humanos , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Peritônio/metabolismo , Qualidade de Vida
3.
Cell Death Differ ; 28(12): 3282-3296, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34117376

RESUMO

Evasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Proteína bcl-X/genética , Adenoma/mortalidade , Adenoma/patologia , Animais , Apoptose , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Análise de Sobrevida
4.
Nat Commun ; 12(1): 3188, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045449

RESUMO

Survival rates of cancer patients vary widely within and between malignancies. While genetic aberrations are at the root of all cancers, individual genomic features cannot explain these distinct disease outcomes. In contrast, intra-tumour heterogeneity (ITH) has the potential to elucidate pan-cancer survival rates and the biology that drives cancer prognosis. Unfortunately, a comprehensive and effective framework to measure ITH across cancers is missing. Here, we introduce a scalable measure of chromosomal copy number heterogeneity (CNH) that predicts patient survival across cancers. We show that the level of ITH can be derived from a single-sample copy number profile. Using gene-expression data and live cell imaging we demonstrate that ongoing chromosomal instability underlies the observed heterogeneity. Analysing 11,534 primary cancer samples from 37 different malignancies, we find that copy number heterogeneity can be accurately deduced and predicts cancer survival across tissues of origin and stages of disease. Our results provide a unifying molecular explanation for the different survival rates observed between cancer types.


Assuntos
Variações do Número de Cópias de DNA , Heterogeneidade Genética , Modelos Genéticos , Neoplasias/mortalidade , Microambiente Tumoral/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Simulação por Computador , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Intervalo Livre de Progressão , Medição de Risco/métodos , Taxa de Sobrevida , Adulto Jovem
5.
Nat Commun ; 11(1): 1501, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198375

RESUMO

Most human cancers are aneuploid, due to a chromosomal instability (CIN) phenotype. Despite being hallmarks of cancer, however, the roles of CIN and aneuploidy in tumor formation have not unequivocally emerged from animal studies and are thus still unclear. Using a conditional mouse model for diverse degrees of CIN, we find that a particular range is sufficient to drive very early onset spontaneous adenoma formation in the intestine. In mice predisposed to intestinal cancer (ApcMin/+), moderate CIN causes a remarkable increase in adenoma burden in the entire intestinal tract and especially in the distal colon, which resembles human disease. Strikingly, a higher level of CIN promotes adenoma formation in the distal colon even more than moderate CIN does, but has no effect in the small intestine. Our results thus show that CIN can be potently oncogenic, but that certain levels of CIN can have contrasting effects in distinct tissues.


Assuntos
Carcinogênese/genética , Instabilidade Cromossômica , Oncogenes/genética , Adenoma/genética , Aneuploidia , Animais , Proliferação de Células , Segregação de Cromossomos , Colo/patologia , Modelos Animais de Doenças , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Intestinais/genética , Intestinos/patologia , Cariótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organoides
6.
Cell Rep ; 9(6): 2001-10, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25497101

RESUMO

Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos/genética , Anormalidades Congênitas/genética , Rearranjo Gênico , Genoma Humano , Mutação em Linhagem Germinativa , Animais , Pontos de Quebra do Cromossomo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , MicroRNAs/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Peixe-Zebra
7.
Nucleic Acids Res ; 40(1): 148-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914722

RESUMO

Routine methods for assaying steady-state mRNA levels such as RNA-seq and micro-arrays are commonly used as readouts to study the role of transcription factors (TFs) in gene expression regulation. However, cellular RNA levels do not solely depend on activity of TFs and subsequent transcription by RNA polymerase II (Pol II), but are also affected by RNA turnover rate. Here, we demonstrate that integrated analysis of genome-wide TF occupancy, Pol II binding and steady-state RNA levels provide important insights in gene regulatory mechanisms. Pol II occupancy, as detected by Pol II ChIP-seq, was found to correlate better with TF occupancy compared to steady-state RNA levels and is thus a more precise readout for the primary transcriptional mechanisms that are triggered by signal transduction. Furthermore, analysis of differential Pol II occupancy and RNA-seq levels identified genes with high Pol II occupancy and relatively low RNA levels and vice versa. These categories are strongly enriched for genes from different functional classes. Our results demonstrate a complementary value in Pol II chip-seq and RNA-seq approaches for better understanding of gene expression regulation.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase II/metabolismo , RNA/metabolismo , Fatores de Transcrição/análise , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Genômica/métodos , Humanos , Análise de Sequência de RNA , Via de Sinalização Wnt
8.
Clin Cancer Res ; 18(3): 688-99, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22173549

RESUMO

PURPOSE: In the era of DNA-guided personalized cancer treatment, it is essential to conduct predictive analysis on the tissue that matters. Here, we analyzed genetic differences between primary colorectal adenocarcinomas (CRC) and their respective hepatic metastasis. EXPERIMENTAL DESIGN: The primary CRC and the subsequent hepatic metastasis of 21 patients with CRC were analyzed using targeted deep-sequencing of DNA isolated from formalin-fixed, paraffin-embedded archived material. RESULTS: We have interrogated the genetic constitution of a designed "Cancer Mini-Genome" consisting of all exons of 1,264 genes associated with pathways relevant to cancer. In total, 6,696 known and 1,305 novel variations were identified in 1,174 and 667 genes, respectively, including 817 variants that potentially altered protein function. On average, 83 (SD = 69) potentially function-impairing variations were gained in the metastasis and 70 (SD = 48) variations were lost, showing that the primary tumor and hepatic metastasis are genetically significantly different. Besides novel and known variations in genes such as KRAS, BRAF, KDR, FLT1, PTEN, and PI3KCA, aberrations in the up/downstream genes of EGFR/PI3K/VEGF-pathways and other pathways (mTOR, TGFß, etc.) were also detected, potentially influencing therapeutic responsiveness. Chemotherapy between removal of the primary tumor and the metastasis (N = 11) did not further increase the amount of genetic variation. CONCLUSION: Our study indicates that the genetic characteristics of the hepatic metastases are different from those of the primary CRC tumor. As a consequence, the choice of treatment in studies investigating targeted therapies should ideally be based on the genetic properties of the metastasis rather than on those of the primary tumor.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/secundário , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , DNA de Neoplasias/análise , DNA de Neoplasias/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Medicina de Precisão
9.
J Cell Sci ; 120(Pt 24): 4367-76, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18057029

RESUMO

To identify novel proteins required for receptor-mediated endocytosis, we have developed an RNAi-based screening method in Drosophila S2 cells, based on uptake of a scavenger receptor ligand. Some known endocytic proteins are essential for endocytosis in this assay, including clathrin and alpha-adaptin; however, other proteins important for synaptic vesicle endocytosis are not required. In a small screen for novel endocytic proteins, we identified the Drosophila homologue of Vps35, a component of the retromer complex, involved in endosome-to-Golgi trafficking. Loss of Vps35 inhibits scavenger receptor ligand endocytosis, and causes mislocalisation of a number of receptors and endocytic proteins. Vps35 has tumour suppressor properties because its loss leads to overproliferation of blood cells in larvae. Its loss also causes signalling defects at the neuromuscular junction, including upregulation of TGFbeta/BMP signalling and excessive formation of synaptic terminals. Vps35 negatively regulates actin polymerisation, and genetic interactions suggest that some of the endocytic and signalling defects of vps35 mutants are due to this function.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endocitose/fisiologia , Regulação da Expressão Gênica , Hemócitos/metabolismo , Hemócitos/fisiologia , Mutação , Junção Neuromuscular/metabolismo , Transporte Proteico/fisiologia , Interferência de RNA , Transdução de Sinais , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA