Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 8(1): 45, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32238195

RESUMO

BACKGROUND: Chronic infection and concomitant airway inflammation is the leading cause of morbidity and mortality for people living with cystic fibrosis (CF). Although chronic infection in CF is undeniably polymicrobial, involving a lung microbiota, infection surveillance and control approaches remain underpinned by classical aerobic culture-based microbiology. How to use microbiomics to direct clinical management of CF airway infections remains a crucial challenge. A pivotal step towards leveraging microbiome approaches in CF clinical care is to understand the ecology of the CF lung microbiome and identify ecological patterns of CF microbiota across a wide spectrum of lung disease. Assessing sputum samples from 299 patients attending 13 CF centres in Europe and the USA, we determined whether the emerging relationship of decreasing microbiota diversity with worsening lung function could be considered a generalised pattern of CF lung microbiota and explored its potential as an informative indicator of lung disease state in CF. RESULTS: We tested and found decreasing microbiota diversity with a reduction in lung function to be a significant ecological pattern. Moreover, the loss of diversity was accompanied by an increase in microbiota dominance. Subsequently, we stratified patients into lung disease categories of increasing disease severity to further investigate relationships between microbiota characteristics and lung function, and the factors contributing to microbiota variance. Core taxa group composition became highly conserved within the severe disease category, while the rarer satellite taxa underpinned the high variability observed in the microbiota diversity. Further, the lung microbiota of individual patient were increasingly dominated by recognised CF pathogens as lung function decreased. Conversely, other bacteria, especially obligate anaerobes, increasingly dominated in those with better lung function. Ordination analyses revealed lung function and antibiotics to be main explanators of compositional variance in the microbiota and the core and satellite taxa. Biogeography was found to influence acquisition of the rarer satellite taxa. CONCLUSIONS: Our findings demonstrate that microbiota diversity and dominance, as well as the identity of the dominant bacterial species, in combination with measures of lung function, can be used as informative indicators of disease state in CF. Video Abstract.


Assuntos
Bactérias/classificação , Fibrose Cística/microbiologia , Pulmão/microbiologia , Pulmão/fisiopatologia , Microbiota , Adulto , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Progressão da Doença , Europa (Continente) , Feminino , Humanos , Inflamação , Pulmão/efeitos dos fármacos , Masculino , Testes de Função Respiratória , Análise de Sequência de DNA , Escarro/microbiologia , Estados Unidos , Adulto Jovem
2.
mSystems ; 4(4)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164451

RESUMO

Temperate bacteriophages are a common feature of Pseudomonas aeruginosa genomes, but their role in chronic lung infections is poorly understood. This study was designed to identify the diverse communities of mobile P. aeruginosa phages by employing novel metagenomic methods, to determine cross infectivity, and to demonstrate the influence of phage infection on antimicrobial susceptibility. Mixed temperate phage populations were chemically mobilized from individual P. aeruginosa, isolated from patients with cystic fibrosis (CF) or bronchiectasis (BR). The infectivity phenotype of each temperate phage lysate was evaluated by performing a cross-infection screen against all bacterial isolates and tested for associations with clinical variables. We utilized metagenomic sequencing data generated for each phage lysate and developed a novel bioinformatic approach allowing resolution of individual temperate phage genomes. Finally, we used a subset of the temperate phages to infect P. aeruginosa PAO1 and tested the resulting lysogens for their susceptibility to antibiotics. Here, we resolved 105 temperate phage genomes from 94 lysates that phylogenetically clustered into 8 groups. We observed disease-specific phage infectivity profiles and found that phages induced from bacteria isolated from more advanced disease infected broader ranges of P. aeruginosa isolates. Importantly, when infecting PAO1 in vitro with 20 different phages, 8 influenced antimicrobial susceptibility. This study shows that P. aeruginosa isolated from CF and BR patients harbors diverse communities of inducible phages, with hierarchical infectivity profiles that relate to the progression of the disease. Temperate phage infection altered the antimicrobial susceptibility of PAO1 at subinhibitory concentrations of antibiotics, suggesting they may be precursory to antimicrobial resistance.IMPORTANCE Pseudomonas aeruginosa is a key opportunistic respiratory pathogen in patients with cystic fibrosis and non-cystic fibrosis bronchiectasis. The genomes of these pathogens are enriched with mobile genetic elements including diverse temperate phages. While the temperate phages of the Liverpool epidemic strain have been shown to be active in the human lung and enhance fitness in a rat lung infection model, little is known about their mobilization more broadly across P. aeruginosa in chronic respiratory infection. Using a novel metagenomic approach, we identified eight groups of temperate phages that were mobilized from 94 clinical P. aeruginosa isolates. Temperate phages from P. aeruginosa isolated from more advanced disease showed high infectivity rates across a wide range of P. aeruginosa genotypes. Furthermore, we showed that multiple phages altered the susceptibility of PAO1 to antibiotics at subinhibitory concentrations.

3.
Respir Res ; 19(1): 106, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848315

RESUMO

BACKGROUND: As a way to determine markers of infection or disease informing disease management, and to reveal disease-associated immune mechanisms, this study sought to measure antibody and T cell responses against key lung pathogens and to relate these to patients' microbial colonization status, exacerbation history and lung function, in Bronchiectasis (BR) and Chronic Obstructive Pulmonary Disease (COPD). METHODS: One hundred nineteen patients with stable BR, 58 with COPD and 28 healthy volunteers were recruited and spirometry was performed. Bacterial lysates were used to measure specific antibody responses by ELISA and T cells by ELIspot. Cytokine secretion by lysate-stimulated T cells was measured by multiplex cytokine assay whilst activation phenotype was measured by flow cytometry. RESULTS: Typical colonization profiles were observed in BR and COPD, dominated by P.aeruginosa, H.influenzae, S.pneumoniae and M.catarrhalis. Colonization frequency was greater in BR, showing association with increased antibody responses against P.aeruginosa compared to COPD and HV, and with sensitivity of 73% and specificity of 95%. Interferon-gamma T cell responses against P.aeruginosa and S.pneumoniae were reduced in BR and COPD, whilst reactive T cells in BR had similar markers of homing and senescence compared to healthy volunteers. Exacerbation frequency in BR was associated with increased antibodies against P. aeruginosa, M.catarrhalis and S.maltophilia. T cell responses against H.influenzae showed positive correlation with FEV1% (r = 0.201, p = 0.033) and negative correlation with Bronchiectasis Severity Index (r = - 0.287, p = 0.0035). CONCLUSION: Our findings suggest a difference in antibody and T cell immunity in BR, with antibody being a marker of exposure and disease in BR for P.aeruginosa, M.catarrhalis and H.influenzae, and T cells a marker of reduced disease for H.influenzae.


Assuntos
Anticorpos Antibacterianos/imunologia , Bronquiectasia/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Linfócitos T/imunologia , Idoso , Anticorpos Antibacterianos/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Bronquiectasia/metabolismo , Feminino , Haemophilus influenzae/imunologia , Haemophilus influenzae/isolamento & purificação , Haemophilus influenzae/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/metabolismo , Linfócitos T/metabolismo
4.
Front Nutr ; 4: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28534028

RESUMO

Large randomized controlled trials (RCTs) in preterm infants offer unique opportunities for mechanistic evaluation of the risk factors leading to serious diseases, as well as the actions of interventions designed to prevent them. Necrotizing enterocolitis (NEC) a serious inflammatory gut condition and late-onset sepsis (LOS) are common feeding and nutrition-related problems that may cause death or serious long-term morbidity and are key outcomes in two current UK National Institutes for Health Research (NIHR) trials. Speed of increasing milk feeds trial (SIFT) randomized preterm infants to different rates of increases in milk feeds with a primary outcome of survival without disability at 2 years corrected age. Enteral lactoferrin in neonates (ELFIN) randomizes infants to supplemental enteral lactoferrin or placebo with a primary outcome of LOS. This is a protocol for the mechanisms affecting the gut of preterm infants in enteral feeding trials (MAGPIE) study and is funded by the UK NIHR Efficacy and Mechanistic Evaluation programme. MAGPIE will recruit ~480 preterm infants who were enrolled in SIFT or ELFIN. Participation in MAGPIE does not change the main trial protocols and uses non-invasive sampling of stool and urine, along with any residual resected gut tissue if infants required surgery. Trial interventions may involve effects on gut microbes, metabolites (e.g., short-chain fatty acids), and aspects of host immune function. Current hypotheses suggest that NEC and/or LOS are due to a dysregulated immune system in the context of gut dysbiosis, but mechanisms have not been systematically studied within large RCTs. Microbiomic analysis will use next-generation sequencing, and metabolites will be assessed by mass spectrometry to detect volatile organic and other compounds produced by microbes or the host. We will explore differences between disease cases and controls, as well as exploring the actions of trial interventions. Impacts of this research are multiple: translation of knowledge of mechanisms promoting gut health may explain outcomes or suggest alternate strategies to improve health. Results may identify new non-invasive diagnostic or monitoring techniques, preventative or treatment strategies for NEC or LOS, or provide data useful for risk stratification in future studies. Mechanistic evaluation might be especially informative where there are not clear effects on the primary outcome (ISRCTN 12554594).

5.
Front Microbiol ; 6: 97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741327

RESUMO

Pseudomonas aeruginosa (Pa), normally a soil commensal, is an important opportunistic pathogen in Cystic Fibrosis (CF) and non-Cystic Fibrosis Bronchiectasis (nCFBR). Persistent infection correlates with accelerated decline in lung function and early mortality. The horizontal transfer of DNA by temperate bacteriophages can add gene function and selective advantages to their bacterial host within the constrained environment of the lower lung. In this study, we chemically induce temperate bacteriophages from clonal cultures of Pa and identify their mixed viral communities employing metagenomic approaches. We compared 92 temperate phage metagenomes stratified from these clinical backgrounds (47 CF and 45 nCFBR Pa isolates) using MG-RAST and GeneWise2. KEGG analysis shows the complexity of temperate phage accessory gene carriage increases with duration and severity of the disease. Furthermore, we identify the presence of Ig-like motifs within phage structural genes linked to bacterial adhesion and carbohydrate binding including Big_2, He_Pig, and Fn3. This study provides the first clinical support to the proposed bacteriophage adherence to mucus (BAM) model and the evolution of phages interacting at these mucosal surfaces over time.

6.
BMC Microbiol ; 14: 130, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24886473

RESUMO

BACKGROUND: Chronic airway infection contributes to the underlying pathogenesis of non-cystic fibrosis bronchiectasis (NCFBr). In contrast to other chronic airway infections, associated with COPD and CF bronchiectasis, where polymicrobial communities have been implicated in lung damage due to the vicious circle of recurrent bacterial infections and inflammation, there is sparse information on the composition of bacterial communities in NCFBr. Seventy consecutive patients were recruited from an outpatient adult NCFBr clinic. Bacterial communities in sputum samples were analysed by culture and pyrosequencing approaches. Bacterial sequences were analysed using partial least square discrimination analyses to investigate trends in community composition and identify those taxa that contribute most to community variation. RESULTS: The lower airway in NCFBr is dominated by three bacterial taxa Pasteurellaceae, Streptococcaceae and Pseudomonadaceae. Moreover, the bacterial community is much more diverse than indicated by culture and contains significant numbers of other genera including anaerobic Prevotellaceae, Veillonellaceae and Actinomycetaceae. We found particular taxa are correlated with different clinical states, 27 taxa were associated with acute exacerbations, whereas 11 taxa correlated with stable clinical states. We were unable to demonstrate a significant effect of antibiotic therapy, gender, or lung function on the diversity of the bacterial community. However, presence of clinically significant culturable taxa; particularly Pseudomonas aeruginosa and Haemophilus influenzae correlated with a significant change in the diversity of the bacterial community in the lung. CONCLUSIONS: We have demonstrated that acute exacerbations, the frequency of exacerbation and episodes of clinical stability are correlated, in some patients, with a significantly different bacterial community structure, that are associated with a presence of particular taxa in the NCFBr lung. Moreover, there appears to be an inverse relationship between the abundance of P. aeruginosa and that of of H. influenzae within the NCFBr lung bacterial community. This interaction requires further exploration.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Bronquiectasia/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas Bacteriológicas , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Análise de Sequência de DNA , Escarro/microbiologia
7.
Analyst ; 134(1): 114-23, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19082183

RESUMO

House mice (Mus domesticus) communicate using scent-marks, and the chemical and microbial composition of these 'extended phenotypes' are both influenced by genetics. This study examined how the genes of the major histocompatibility complex (MHC) and background genes influence the volatile compounds (analysed with Gas Chromatography Mass Spectrometry or GC/MS) and microbial communities (analysed using Denaturating Gradient Gel Electrophoresis or DGGE) in scent-marks produced by congenic strains of mice. The use of Consensus Principal Components Analysis is described and shows relationships between the two types of fingerprints (GC/MS and DGGE profiles). Classification methods including Support Vector Machines and Discriminant Partial Least Squares suggest that mice can be classified according to both background strain and MHC-haplotype. As expected, the differences among the mice were much greater between strains that vary at both MHC and background loci than the congenics, which differ only at the MHC. These results indicate that the volatiles in scent-marks provide information about genetic similarity of the mice, and support the idea that the production of these genetically determined volatiles is influenced by commensal microflora. This paper describes the application of consensus methods to relate two blocks of analytical data.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Complexo Principal de Histocompatibilidade , Camundongos Congênicos , Odorantes/análise , Processamento de Sinais Assistido por Computador , Animais , Biomarcadores/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA