Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1436: 169-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27246215

RESUMO

Acetylation has been shown to be an important posttranslational modification (PTM) of both histone and nonhistone proteins with particular implications in cell signaling and transcriptional regulation of gene expression. Many studies have already demonstrated that SIRT1 is able to deacetylate histones and lead to gene silencing. It can also regulate the function of tumor suppressors including FOXO proteins and p53 by deacetylation. Here, we describe three experimental approaches for studying the modulation of the acetylation status of some of the known downstream targets of SIRT1.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Histonas/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Western Blotting , Epigênese Genética , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Imunoprecipitação , Células MCF-7 , Camundongos , Mutagênese Sítio-Dirigida , Sirtuína 1/genética
2.
ChemMedChem ; 10(1): 69-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25395356

RESUMO

Sirtuins, NAD(+) -dependent histone deacetylases (HDACs), have recently emerged as potential therapeutic targets for the treatment of a variety of diseases. The discovery of potent and isoform-selective inhibitors of this enzyme family should provide chemical tools to help determine the roles of these targets and validate their therapeutic value. Herein, we report the discovery of a novel class of highly selective SIRT2 inhibitors, identified by pharmacophore screening. We report the identification and validation of 3-((2-methoxynaphthalen-1-yl)methyl)-7-((pyridin-3-ylmethyl)amino)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (ICL-SIRT078), a substrate-competitive SIRT2 inhibitor with a Ki value of 0.62 ± 0.15 µM and more than 50-fold selectivity against SIRT1, 3 and 5. Treatment of MCF-7 breast cancer cells with ICL-SIRT078 results in hyperacetylation of α-tubulin, an established SIRT2 biomarker, at doses comparable with the biochemical IC50 data, while suppressing MCF-7 proliferation at higher concentrations. In concordance with the recent reports that suggest SIRT2 inhibition is a potential strategy for the treatment of Parkinson's disease, we find that compound ICL-SIRT078 has a significant neuroprotective effect in a lactacystin-induced model of Parkinsonian neuronal cell death in the N27 cell line. These results encourage further investigation into the effects of ICL-SIRT078, or an optimised derivative thereof, as a candidate neuroprotective agent in in vivo models of Parkinson's disease.


Assuntos
Inibidores de Histona Desacetilases/química , Fármacos Neuroprotetores/química , Pirimidinonas/química , Sirtuína 2/antagonistas & inibidores , Tiofenos/química , Animais , Sítios de Ligação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ligação Proteica , Estrutura Terciária de Proteína , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Ratos , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Tiofenos/farmacologia , Tiofenos/uso terapêutico
3.
Carcinogenesis ; 34(7): 1476-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23514751

RESUMO

In this study, we report the identification of a novel role of SIRT6 in both epirubicin and paclitaxel resistance in breast cancer. We found that SIRT6 protein levels are elevated in paclitaxel- and epirubicin-resistant MCF-7 cells compared with the parental sensitive cells. SIRT6 knockout and depletion sensitized cells to both paclitaxel and epirubicin treatment, whereas SIRT6 ectopic overexpression led to increased resistance to paclitaxel and epirubicin. Moreover, our data suggest that SIRT6 could be mediating epirubicin resistance through enhancing the DNA repair response to epirubicin-induced DNA damage. Clonogenic assays also revealed that mouse embryonic fibroblasts (MEFs) lacking SIRT6 have decreased long-term viability in response to epirubicin. The tumour suppressor FOXO3a increases its levels of acetylation in MEFs depleted of SIRT6, whereas its induction by epirubicin is attenuated in breast cancer cells overexpressing SIRT6. Further cell viability studies demonstrate that deletion of FOXO1/3/4 in MEFs can confer sensitivity to both paclitaxel and epirubicin, suggesting that SIRT6 reduces paclitaxel and epirubicin sensitivity, at least in part, through modulating FOXO acetylation and expression. Consistently, immunohistochemical analysis of 118 breast cancer patient samples revealed that high SIRT6 nuclear staining is significantly associated with poorer overall survival (P = 0.018; Kaplan-Meier analysis). Multivariate Cox analysis demonstrated that nuclear SIRT6 staining remained associated with death after correcting for tumour stage and lymph-node involvement (P = 0.033). Collectively, our data suggest that SIRT6 has a role in paclitaxel and epirubicin sensitivity via targeting FOXO proteins and that SIRT6 could be a useful biomarker and therapeutic target for paclitaxel- and epirubicin-resistant cancer.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Epirubicina/farmacologia , Paclitaxel/farmacologia , Sirtuínas/metabolismo , Acetilação , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Morte Celular , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Reparo do DNA , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Células MCF-7 , Camundongos , Modelos de Riscos Proporcionais , Sirtuínas/genética
4.
Medchemcomm ; (3)2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24340169

RESUMO

Isoform selective inhibitors of the sirtuins (NAD+-dependent histone deacetylases) should enable an in depth study of the molecular biology underpinning these targets and how they are deregulated in diseases such as cancer and neurodegeneration. Herein, we present the discovery of structurally novel SIRT2 inhibitors. Hit molecule 8 was discovered through the chemical synthesis and biological characterization of a small-molecule compound library based around the 10,11-dihydro-5H-dibenz[b,f]azepine scaffold. In vitro screening assays revealed compound 8 to have an IC50 of 18 µM against SIRT2 and to exhibit more than 30-fold selectivity compared to SIRT1. Cellular assays, performed on MCF-7 cells, confirmed the in vitro selectivity and showed hit 8 to have antiproliferative activity at a concentration of 30 µM. Computational studies were performed to predict the SIRT2 binding mode and to rationalise the observed selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA