Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200281, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991170

RESUMO

BACKGROUND AND OBJECTIVES: Progressive multifocal leukoencephalopathy (PML) is a severe neurologic disease resulting from JC virus reactivation in immunocompromised patients. Certain multiple sclerosis (MS) disease-modifying therapies (DMTs) are associated with PML risk, such as natalizumab and, more rarely, sphingosine-1-phosphate receptor modulators (S1P-RMs). Although natalizumab-associated PML is well documented, information on S1P-RM-associated PML is limited. The aim of this study is to compare clinical presentations and outcomes between the 2 groups. METHODS: A retrospective multicenter cohort study included patients with PML from 2009 to 2022 treated with S1P-RMs or natalizumab. Data on clinical and radiologic presentation, outcomes, immune reconstitution inflammatory syndrome (IRIS), survival, disability (using the modified Ranking scale-mRS), and MS relapses post-PML were analyzed. RESULTS: Of 88 patients, 84 were analyzed (20 S1P-RM, 64 natalizumab). S1P-RM-associated PML was diagnosed in older patients (median age 52 vs 44 years, p < 0.001) and after longer treatment duration (median 63.9 vs 40 months, p < 0.001). Similarly, S1P-RM patients were more prone to show symptoms at diagnosis (100 vs 80.6%, p = 0.035), had more disseminated lesions (80% vs 34.9%, p = 0.002), and had higher gadolinium enhancement (65% vs 39.1%, p = 0.042). Natalizumab patients had a higher IRIS development rate (OR: 8.3 [1.92-33.3]). Overall, the outcome (mRS) at 12 months was similar in the 2 groups (OR: 0.81 [0.32-2.0]). Yet, post-treatment MS activity was higher in S1P-RM cases (OR: 5.7 [1.4-22.2]). DISCUSSION: S1P-RM-associated PML shows reduced IRIS risk but higher post-treatment MS activity. Clinicians should tailor post-PML treatment based on pre-PML medication.


Assuntos
Leucoencefalopatia Multifocal Progressiva , Natalizumab , Moduladores do Receptor de Esfingosina 1 Fosfato , Humanos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Natalizumab/efeitos adversos , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Estudos Retrospectivos , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/efeitos adversos , Esclerose Múltipla/tratamento farmacológico , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/administração & dosagem , Estudos de Coortes , Idoso , Síndrome Inflamatória da Reconstituição Imune/induzido quimicamente
2.
Sci Rep ; 10(1): 18997, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149178

RESUMO

Chimeric antigen receptor-modified T (CAR T) cell therapy is a highly promising treatment for haematological malignancies but is frequently associated with cytokine release syndrome and neurotoxicity. Between July 2018 and July 2019, all patients treated with CD19-targeted CAR T-cell therapy for relapsing lymphoma were followed-up longitudinally to describe neurological symptoms and their evolution over time. Four different French centres participated and 84 patients (median age 59 years, 31% females) were included. Neurotoxicity, defined as the presence of at least one neurological symptom appearing after treatment infusion, was reported in 43% of the patients. The median time to onset was 7 days after infusion with a median duration of 6 days. More than half of the patients (64%) had grade 1-2 severity and 34% had grade 3-4. CRS was observed in 80% of all patients. The most frequent neurological symptoms were cognitive signs, being severe in 36%, and were equally distributed between language disorders and cognitive disorders without language impairment. Non-pyramidal motor disorders, severe in 11%, were reported in 42% of the patients. Elevation of C-reactive protein (CRP) within 4 days after treatment was significantly correlated with the occurrence of grade 3-4 neurotoxicity. Although sometimes severe, neurotoxicity was almost always reversible. The efficacy of steroids and antiepileptic drugs remains unproven in the management of neurotoxicity. Neurotoxicity associated with CAR T-cell therapies occurs in more than 40% of patients. The clinical pattern is heterogeneous but cognitive disorders (not limited to language disorders) and, to a minor degree, non-pyramidal motor disorders, appeared as a signature of severe neurotoxicity.


Assuntos
Imunoterapia Adotiva/efeitos adversos , Linfoma de Células B/terapia , Síndromes Neurotóxicas/epidemiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Adulto , Idoso , Proteína C-Reativa/metabolismo , Feminino , Humanos , Linfoma de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Síndromes Neurotóxicas/metabolismo , Estudos Prospectivos , Índice de Gravidade de Doença , Análise de Sobrevida , Resultado do Tratamento
3.
Nature ; 557(7707): 724-728, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769726

RESUMO

Microglia and astrocytes modulate inflammation and neurodegeneration in the central nervous system (CNS)1-3. Microglia modulate pro-inflammatory and neurotoxic activities in astrocytes, but the mechanisms involved are not completely understood4,5. Here we report that TGFα and VEGF-B produced by microglia regulate the pathogenic activities of astrocytes in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Microglia-derived TGFα acts via the ErbB1 receptor in astrocytes to limit their pathogenic activities and EAE development. Conversely, microglial VEGF-B triggers FLT-1 signalling in astrocytes and worsens EAE. VEGF-B and TGFα also participate in the microglial control of human astrocytes. Furthermore, expression of TGFα and VEGF-B in CD14+ cells correlates with the multiple sclerosis lesion stage. Finally, metabolites of dietary tryptophan produced by the commensal flora control microglial activation and TGFα and VEGF-B production, modulating the transcriptional program of astrocytes and CNS inflammation through a mechanism mediated by the aryl hydrocarbon receptor. In summary, we identified positive and negative regulators that mediate the microglial control of astrocytes. Moreover, these findings define a pathway through which microbial metabolites limit pathogenic activities of microglia and astrocytes, and suppress CNS inflammation. This pathway may guide new therapies for multiple sclerosis and other neurological disorders.


Assuntos
Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/microbiologia , Microglia/metabolismo , Animais , Astrócitos/patologia , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/prevenção & controle , Receptores ErbB/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Inflamação/prevenção & controle , Receptores de Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Receptores de Hidrocarboneto Arílico/metabolismo , Simbiose , Fator de Crescimento Transformador alfa/biossíntese , Fator de Crescimento Transformador alfa/metabolismo , Triptofano/deficiência , Triptofano/metabolismo , Fator B de Crescimento do Endotélio Vascular/biossíntese , Fator B de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Exp Neurol ; 183(2): 367-78, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14552878

RESUMO

A recombinant adeno-associated virus (rAAV) was used to investigate the impact of an ectopic expression of the NGF high-affinity receptor in adult neurons. The rat TrkA cDNA cloned in a pCMX vector was first tagged with a human c-Myc sequence. The resulting vector was shown to encode a functional receptor which promoted the expression of TrkA immunoreactivity upon transfection of 293 fibroblasts or nnr5 cells, a TrkA-defective variant of PC12 cells. These cells also accumulate TrkA transcripts upon transfection and extended neurites in the presence of NGF. Therefore, the TrkA(myc) cassette was inserted into the pSSV9 plasmid. The new vectors shared properties similar to pCMX TrkA(myc) in 293 and nnr5 cells and enabled the preparation of rAAV TrkA(myc) viruses. Unilateral injection of this rAAV into the substantia nigra (SN) resulted in a protracted expression of TrkA (or c-Myc) immunoreactivity in numerous cell bodies, including tyrosine-hydroxylase (TH)-positive dopaminergic neurons. The presence of TrkA receptors in corresponding striatal dopaminergic endings was demonstrated by the advent of a striato-nigral retrograde axonal transport of (125)I-NGF. Likewise, ectopic expression of TrkA in neurons of the parafascicular thalamic nucleus promoted a striatofuge transport of NGF toward this structure. To investigate whether ectopic expression of TrkA in SN neurons may confer neuroprotection, lesions were induced by 6-hydroxydopamine in striata located ipsilateral to the virus injection site. NGF or vehicle were next delivered dorsally to the virus-treated SN for 2 weeks, before sacrifice and processing of brains for TH-immunohistochemistry. NGF treatment, in contrast to treatment with vehicle, significantly enhanced the number of dopaminergic neurons counted in the lesioned SN. These data suggest that ectopic TrkA can mediate the trophic actions of NGF and influence neuronal plasticity in vivo.


Assuntos
Dopamina/metabolismo , Mesencéfalo/metabolismo , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptor trkA/biossíntese , Animais , Transporte Axonal/efeitos dos fármacos , Transporte Axonal/fisiologia , Linhagem Celular , Dependovirus/genética , Feminino , Expressão Gênica/fisiologia , Humanos , Mesencéfalo/citologia , Fator de Crescimento Neural/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Células PC12 , Ratos , Ratos Sprague-Dawley , Receptor trkA/genética , Substância Negra/citologia , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA