Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 5(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396334

RESUMO

The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment.


Assuntos
Glucose , Hexosaminas , Receptores ErbB/genética , Glucose/metabolismo , Glicosilação , Hexosaminas/metabolismo , Humanos , Nutrientes
2.
Mol Cell ; 79(1): 115-126.e6, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32497497

RESUMO

Extension of telomeres is a critical step in the immortalization of cancer cells. This complex reaction requires proper spatiotemporal coordination of telomerase and telomeres and remains poorly understood at the cellular level. To understand how cancer cells execute this process, we combine CRISPR genome editing and MS2 RNA tagging to image single molecules of telomerase RNA (hTR). Real-time dynamics and photoactivation experiments of hTR in Cajal bodies (CBs) reveal that hTERT controls the exit of hTR from CBs. Single-molecule tracking of hTR at telomeres shows that TPP1-mediated recruitment results in short telomere-telomerase scanning interactions, and then base pairing between hTR and telomere ssDNA promotes long interactions required for stable telomerase retention. Interestingly, POT1 OB-fold mutations that result in abnormally long telomeres in cancers act by enhancing this retention step. In summary, single-molecule imaging unveils the life cycle of telomerase RNA and provides a framework to reveal how cancer-associated mutations mechanistically drive defects in telomere homeostasis.


Assuntos
Corpos Enovelados/metabolismo , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Imagem Individual de Molécula/métodos , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Cadeia Simples/genética , Edição de Genes , Células HeLa , Humanos , Mutação , RNA/genética , Complexo Shelterina , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA