Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36831254

RESUMO

The prognosis of pancreatic ductal adenocarcinoma (PDAC) is exceedingly poor. Although surgical resection is the only curative treatment option, multimodal treatment is of the utmost importance, as only about 20% of tumors are primarily resectable at the time of diagnosis. The choice of chemotherapeutic treatment regimens involving gemcitabine and FOLFIRINOX is currently solely based on the patient's performance status, but, ideally, it should be based on the tumors' individual biology. We established two novel patient-derived primary cell lines from surgical PDAC specimens. LuPanc-1 and LuPanc-2 were derived from a pT3, pN1, G2 and a pT3, pN2, G3 tumor, respectively, and the clinical follow-up was fully annotated. STR-genotyping revealed a unique profile for both cell lines. The population doubling time of LuPanc-2 was substantially longer than that of LuPanc-1 (84 vs. 44 h). Both cell lines exhibited a typical epithelial morphology and expressed moderate levels of CK7 and E-cadherin. LuPanc-1, but not LuPanc-2, co-expressed E-cadherin and vimentin at the single-cell level, suggesting a mixed epithelial-mesenchymal differentiation. LuPanc-1 had a missense mutation (p.R282W) and LuPanc-2 had a frameshift deletion (p.P89X) in TP53. BRCA2 was nonsense-mutated (p.Q780*) and CREBBP was missense-mutated (p.P279R) in LuPanc-1. CDKN2A was missense-mutated (p.H83Y) in LuPanc-2. Notably, only LuPanc-2 harbored a partial or complete deletion of DPC4. LuPanc-1 cells exhibited high basal and transforming growth factor (TGF)-ß1-induced migratory activity in real-time cell migration assays, while LuPanc-2 was refractory. Both LuPanc-1 and LuPanc-2 cells responded to treatment with TGF-ß1 with the activation of SMAD2; however, only LuPanc-1 cells were able to induce TGF-ß1 target genes, which is consistent with the absence of DPC4 in LuPanc-2 cells. Both cell lines were able to form spheres in a semi-solid medium and in cell viability assays, LuPanc-1 cells were more sensitive than LuPanc-2 cells to treatment with gemcitabine and FOLFIRINOX. In summary, both patient-derived cell lines show distinct molecular phenotypes reflecting their individual tumor biology, with a unique clinical annotation of the respective patients. These preclinical ex vivo models can be further explored for potential new treatment strategies and might help in developing personalized (targeted) therapy regimens.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Fator de Crescimento Transformador beta1/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/patologia , Gencitabina , Caderinas/metabolismo , Neoplasias Pancreáticas
2.
Biomedicines ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289908

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) cells are known for their high invasive/metastatic potential, which is regulated in part by the transforming growth factor ß1 (TGFß1). The involvement of at least two type I receptors, ALK5 and ALK2, that transmit downstream signals of the TGFß via different Smad proteins, SMAD2/3 and SMAD1/5, respectively, poses the issue of their relative contribution in regulating cell motility. Real-time cell migration assays revealed that the selective inhibition of ALK2 by RNAi or dominant-negative interference with a kinase-dead mutant (ALK2-K233R) strongly enhanced the cells' migratory activity in the absence or presence of TGFß1 stimulation. Ectopic ALK2-K233R expression was associated with an increase in the protein levels of RAC1 and its alternatively spliced isoform, RAC1b, both of which are implicated in driving cell migration and invasion. Conversely, the RNAi-mediated knockdown or CRISPR/Cas9-mediated knockout of RAC1b resulted in the upregulation of the expression of ALK2, but not that of the related BMP type I receptors, ALK3 or ALK6, and elevated the phosphorylation of SMAD1/5. PDAC is a heterogeneous disease encompassing tumors with different histomorphological subtypes, ranging from epithelial/classical to extremely mesenchymal. Upon treatment of various established and primary PDAC cell lines representing these subtypes with the ALK2 inhibitor, LDN-193189, well-differentiated, epithelial cell lines responded with a much stronger increase in the basal and TGFß1-dependent migratory activity than poorly differentiated, mesenchymal ones. These data show that (i) ALK2 inhibits migration by suppressing RAC1/RAC1b proteins, (ii) ALK2 and RAC1b act together in a self-perpetuating the autoregulatory negative feedback loop to mutually control their expression, and (iii) the ALK2 antimigratory function appears to be particularly crucial in protecting epithelial subtype cells from becoming invasive, both spontaneously and in a TGFß-rich tumor microenvironment.

3.
Cancers (Basel) ; 13(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572891

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and therapy-resistant cancer types which is largely due to tumor heterogeneity, cancer cell de-differentiation, and early metastatic spread. The major molecular subtypes of PDAC are designated classical/epithelial (E) and quasi-mesenchymal (QM) subtypes, with the latter having the worst prognosis. Epithelial-mesenchymal transition (EMT) and the reverse process, mesenchymal-epithelial transition (MET), are involved in regulating invasion/metastasis and stem cell generation in cancer cells but also early pancreatic endocrine differentiation or de-differentiation of adult pancreatic islet cells in vitro, suggesting that pancreatic ductal exocrine and endocrine cells share common EMT programs. Using a panel of PDAC-derived cell lines classified by epithelial/mesenchymal expression as either E or QM, we compared their trans-differentiation (TD) potential to endocrine progenitor or ß cell-like cells since studies with human pancreatic cancer cells for possible future TD therapy in PDAC patients are not available so far. We observed that QM cell lines responded strongly to TD culture using as inducers 5'-aza-2'-deoxycytidine or growth factors/cytokines, while their E counterparts were refractory or showed only a weak response. Moreover, the gain of plasticity was associated with a decrease in proliferative and migratory activities and was directly related to epigenetic changes acquired during selection of a metastatic phenotype as revealed by TD experiments using the paired isogenic COLO 357-L3.6pl model. Our data indicate that a QM phenotype in PDAC coincides with increased plasticity and heightened trans-differentiation potential to activate a pancreatic ß cell-specific transcriptional program. We strongly assume that this specific biological feature has potential to be exploited clinically in TD-based therapy to convert metastatic PDAC cells into less malignant or even benign cells.

4.
J Vis Exp ; (172)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34251366

RESUMO

Realistic preclinical models of primary pancreatic cancer and metastasis are urgently needed to test the therapy response ex vivo and facilitate personalized patient treatment. However, the absence of tumor-specific microenvironment in currently used models, e.g., patient-derived cell lines and xenografts, only allows limited predictive insights. Organotypic slice cultures (OTSCs) comprise intact multicellular tissue, which can be rapidly used for the spatially resolved drug response testing. This protocol describes the generation and cultivation of viable tumor slices of pancreatic cancer and its metastasis. Briefly, tissue is casted in low melt agarose and stored in cold isotonic buffer. Next, tissue slices of 300 µm thickness are generated with a vibratome. After preparation, slices are cultured at an air-liquid interface using cell culture inserts and an appropriate cultivation medium. During cultivation, changes in cell differentiation and viability can be monitored. Additionally, this technique enables the application of treatment to viable human tumor tissue ex vivo and subsequent downstream analyses, such as transcriptome and proteome profiling. OTSCs provide a unique opportunity to test the individual treatment response ex vivo and identify individual transcriptomic and proteomic profiles associated with the respective response of distinct slices of a tumor. OTSCs can be further explored to identify therapeutic strategies to personalize treatment of primary pancreatic cancer and metastasis.


Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Perfilação da Expressão Gênica , Humanos , Técnicas de Cultura de Órgãos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA