Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Pharm ; 622: 121905, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35697201

RESUMO

Indomethacin (IND) is topically administered for the treatment of the anterior segment diseases such as conjunctivitis, uveitis, and inflammation prevention for post-cataract surgery, as well as posterior segment diseases as macular edema. Currently IND is available as 0.1% w/v hydroxypropyl-ß-cyclodextrin-based eye drop formulation and its bioavailability is limited by several drawbacks such as the nasolacrimal duct draining, the reflex blinking and the low volume of the conjunctival sac. In this study, chitosan (CS)/sulfobutylether-ß-cyclodextrin (SBE-ß-CD) based nanoparticles (NPs) with a mean diameter of 340 (±7) nm, a ζ-potential value of +18.3 (±0.5) mV and coated with thiolated low molecular weight hyaluronic acid were formulated to improve both the solubility and the residential time in the conjunctival sac of the loaded drug IND. The NPs were prepared through the ionotropic gelation technique, exploiting the interaction between the positively charged amino group of CS and the negatively charged sulfonic group of SBE-ß-CD. The mucoadhesive properties of the NPs were evaluated on chicken trachea and esophagus tissues using a texture analyser. The irritability effects of NPs were disclaimed with Hecam test. The developed coated NPs showed increased residential time in the conjunctival sac, displayed no irritancy or toxicity for local administration, making them an optimal and innovative drug delivery system for the treatment of anterior segment inflammation diseases. On the other hand, the uncoated NPs displayed better permeating properties since they are smaller and could be further exploited for the treatment of posterior segment diseases.


Assuntos
Quitosana , Nanopartículas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Ácido Hialurônico , Indometacina , Inflamação , beta-Ciclodextrinas
2.
Drug Deliv Transl Res ; 12(8): 1895-1910, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35138629

RESUMO

Niclosamide (NCS) is a drug that has been used as an anthelmintic and anti-parasitic drug for about 40 years. Recently, some studies have highlighted its potential in treating various tumors, allowing a repositioning of this drug. Despite its potential, NCS is a Biopharmaceutical Classification System (BCS) Class II drug and is consequently characterized by low aqueous solubility, poor dissolution rate and reduced bioavailability, which limits its applicability. In this work, we utilize a very novel technique, direct powder extrusion (DPE) 3D printing, which overcomes the limitations of previously used techniques (fused deposition modelling, FDM) to achieve direct extrusion of powder mixtures consisting of NCS, hydroxypropyl methylcellulose (HPMC, Affinisol 15 LV), hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and polyethylene glycol (PEG) 6000. For the first time, direct printing of powder blends containing HP-ß-CD was conducted. For all tablets, in vitro dissolution studies showed sustained drug release over 48 h, but for tablets containing HP-ß-CD, the release was faster. Solid-state characterization studies showed that during extrusion, the drug lost its crystal structure and was evenly distributed within the polymer matrix. All printed tablets have exhibited good mechanical and physical features and a stability of the drug content for up to 3 months. This innovative printing technique has demonstrated the possibility to produce personalized pharmaceutical forms directly from powders, avoiding the use of filament used by FDM.


Assuntos
Ciclodextrinas , Niclosamida , 2-Hidroxipropil-beta-Ciclodextrina , Liberação Controlada de Fármacos , Pós , Impressão Tridimensional , Solubilidade , Comprimidos/química , Tecnologia Farmacêutica/métodos
3.
J Colloid Interface Sci ; 608(Pt 1): 239-254, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626971

RESUMO

HYPOTHESIS: Solid lipid nanoparticles (SLNs), co-encapsulating superparamagnetic iron oxide nanoparticles and sorafenib, have been exploited for magnetic-guided drug delivery to the liver. Two different magnetic configurations, both comprising two small magnets, were under-skin implanted to investigate the effect of the magnetic field topology on the magnetic SLNP accumulation in liver tissues. A preliminary simulation analysis was performed to predict the magnetic field topography for each tested configuration. EXPERIMENTS: SLNs were prepared using a hot homogenization approach and characterized using complementary techniques. Their in vitro biological behavior was assessed in HepG-2 liver cancer cells; wild-type mice were used for the in vivo study. The magnet configuration that resulted in a higher magnetic targeting efficiency was investigated by evaluating the iron content in homogenated murine liver tissues. FINDINGS: SLNs, characterized by an average size smaller than 200 nm, retained their superparamagnetic behavior and relevant molecular resonance imaging properties as negative contrast agents. The evaluation of iron accumulation in the liver tissues was consistent with the magnetic induction profile of each magnet configuration, concurring with the results predicted by simulation analysis and obtained by measurements in living mice.


Assuntos
Nanopartículas de Magnetita , Animais , Lipossomos , Fígado , Campos Magnéticos , Camundongos , Nanopartículas , Sorafenibe
4.
Int J Pharm ; 610: 121246, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34737115

RESUMO

Solid lipid nanoparticles (SLNs) can combine the advantages of different colloidal carriers and prevent some of their disadvantages. The production of nanoparticles by means of microfluidics represents a successful platform for industrial scale-up of nanoparticle manufacture in a reproducible way. The realisation of a microfluidic technique to obtain SLNs in a continuous and reproducible manner encouraged us to create surface functionalised SLNs for targeted drug release using the same procedure. A tumor homing peptide, iRGD, owning a cryptic C-end Rule (CendR) motif is responsible for neuropilin-1 (NRP-1) binding and for triggering extravasation and tumor penetration of the peptide. In this study, the Paclitaxel loaded-SLNs produced by microfluidics were functionalized with the iRGD peptide. The SLNs proved to be stable in aqueous medium andwere characterized by a Z-average under 150 nm, a polydispersity index below 0.2, a zeta-potential between -20 and -35 mV and a drug encapsulation efficiency around 40%. Moreover, in vitro cytotoxic effects and cellular uptake have been assessed using 2D and 3D tumour models of U87 glioblastoma cell lines. Overall, these results demonstrate that the surface functionalization of SLNs with iRGD allow better cellular uptake and cytotoxicity ability.


Assuntos
Nanopartículas , Paclitaxel , Linhagem Celular Tumoral , Portadores de Fármacos , Lipossomos , Microfluídica , Tamanho da Partícula
5.
Int J Pharm ; 608: 121128, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34560204

RESUMO

Purified Glycogen (PG) is a highly hyper branched carbohydrate, characterized by high water solubility and very moderate increase in viscosity. The dendrimeric structure of PG, appropriately functionalized, makes it an alternative to current synthetic gene delivery agents. The present study explores the preparation of purified glycogen polycationic derivatives (PGPDs), developed and characterized starting from a single step reaction between PG and N,N-dialkylamino alkyl halides. Subsequently PGPDs were used for the complexation of a model siRNA nucleic acid, a transfection reagent siRNA and a fluorescein-labelled dsRNA oligomer. PGPDs-siRNA complexes were fully characterized by agarose gel electrophoresis and their efficacy was assessed by both confocal microscopy and transfection assays on breast and renal cancer cells. Results proved that PGPDs-siRNA complexes were efficient and not cytotoxic, maintaining their spherical and dendrimeric structure and, particularly, were able to effectively transfect the target cells by releasing the siRNA.


Assuntos
Técnicas de Transferência de Genes , Glicogênio , Terapia Genética , RNA Interferente Pequeno , Transfecção
6.
Pharmaceutics ; 13(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452144

RESUMO

To efficiently lower virus infectivity and combat virus epidemics or pandemics, it is important to discover broadly acting antivirals. Here, we investigated two naturally occurring polyphenols, Epigallocatechin gallate (EGCG) and Resveratrol (RES), and polyphenol-functionalized nanoparticles for their antiviral efficacy. Concentrations in the low micromolar range permanently inhibited the infectivity of high doses of enteroviruses (107 PFU/mL). Sucrose gradient separation of radiolabeled viruses, dynamic light scattering, transmission electron microscopic imaging and an in-house developed real-time fluorescence assay revealed that polyphenols prevented infection mainly through clustering of the virions into very stable assemblies. Clustering and stabilization were not compromised even in dilute virus solutions or after diluting the polyphenols-clustered virions by 50-fold. In addition, the polyphenols lowered virus binding on cells. In silico docking experiments of these molecules against 2- and 3-fold symmetry axes of the capsid, using an algorithm developed for this study, discovered five binding sites for polyphenols, out of which three were novel binding sites. Our results altogether suggest that polyphenols exert their antiviral effect through binding to multiple sites on the virion surface, leading to aggregation of the virions and preventing RNA release and reducing cell surface binding.

7.
Int J Pharm ; 599: 120412, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662467

RESUMO

Natural oils that are rich in biologically active polyunsaturated fatty acids have many health benefits but have insufficient bioavailability and may oxidize in the gastrointestinal tract. For these reasons and to improve the handling as well, the possibility of incorporating a natural oil, extracted from Serenoa Repens fruits (SR-oil), in alginate-based beads was investigated. SR-oil has been used from centuries in both traditional and modern medicine for various nutraceutical or therapeutic purposes such as, in both sexes, as a general tonic, for genitourinary problems, to increase sexual vigor, as a diuretic or to treat in male lower urinary tract symptoms and benign prostatic hyperplasia. In this study, alginate-based beads prepared by vibration technology, also known as prilling technique, were explored as SR-oil delivery systems. Twenty-seven different formulations (F1-F27) were produced starting from stable emulsions for the period of the production. The formulations having spheroid shape (sfericity factor <0.07), high formulation yield (>90%) and high encapsulation efficiency (EE% > 80) were selected for further characterizations. Gas chromatographic analysis revealed a high loading of lauric acid as principal component of SR-oil allowing to calculate the content of total fatty acids (>50%) into the beads. Swelling behavior and release features were also studied at different pH values. The swelling of the beads and their SR-oil release were negligible for the first 2 h in simulated gastric fluid (pH 1.2), and appreciable in simulated intestinal fluid (pH 6.8). The release data were fitted by various equations to define the release kinetic mechanism. In addition, the selected formulation (F16) was stable to the oxidation not only during the formulation process, but also after 3 months of storage at room temperature. In summary, these polynucleate alginate beads, produced by prilling technique, are promising systems for improving the intestinal specific delivery and bioavailability of health-promoting bioactive SR-oil.


Assuntos
Alginatos , Serenoa , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Intestinos , Masculino , Óleos
8.
Cancers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008170

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents a great challenge to the successful delivery of the anticancer drugs. The intrinsic characteristics of the PDAC microenvironment and drugs resistance make it suitable for therapeutic approaches with stimulus-responsive drug delivery systems (DDSs), such as pH, within the tumor microenvironment (TME). Moreover, the high expression of uPAR in PDAC can be exploited for a drug receptor-mediated active targeting strategy. Here, a pH-responsive and uPAR-targeted Gemcitabine (Gem) DDS, consisting of polymeric micelles (Gem@TpHResMic), was formulated by microfluidic technique to obtain a preparation characterized by a narrow size distribution, good colloidal stability, and high drug-encapsulation efficiency (EE%). The Gem@TpHResMic was able to perform a controlled Gem release in an acidic environment and to selectively target uPAR-expressing tumor cells. The Gem@TpHResMic displayed relevant cellular internalization and greater antitumor properties than free Gem in 2D and 3D models of pancreatic cancer, by generating massive damage to DNA, in terms of H2AX phosphorylation and apoptosis induction. Further investigation into the physiological model of PDAC, obtained by a co-culture of tumor spheroids and cancer-associated fibroblast (CAF), highlighted that the micellar system enhanced the antitumor potential of Gem, and was demonstrated to overcome the TME-dependent drug resistance. In vivo investigation is warranted to consider this new DDS as a new approach to overcome drug resistance in PDAC.

9.
Int J Pharm ; 591: 120011, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33115695

RESUMO

P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) are two transporters expressed in human neural stem/progenitor cells and at the Blood-Brain Barrier (BBB) level with decreased activity in the early stage of Alzheimer's disease (AD). Both proteins, have a protective role for the embryonic stem cells in the early developmental step, maintaining them in an undifferentiated state, and limit the access of exogenous and endogenous agents to the brain. Recently, MC111 selected from a P-gp/BCRP ligands library was investigated as multitarget strategy for AD treatment, considering its ability to induce the expression and activity of both proteins. However, MC111 clinical use could be limited for the ubiquitous physiological expression of efflux transporters and its moderate toxicity towards endothelial cells. Therefore, a selective MC111 delivery system based on nanostructured lipid carriers (NLC) functionalized with transferrin were developed. The results proved the formation of NLC with average size about 120 nm and high drug encapsulation efficiency (EE% greater than 50). In vitro studies on hCMEC/D3 cells revealed that the MC111 was selectively released by NLC at BBB level and then inducing the activity and expression of BCRP and P-gp, involved in the clearance of amyloid ß peptide on brain endothelial cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Doença de Alzheimer , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Lipídeos , Proteínas de Neoplasias/metabolismo , Transferrina
10.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906812

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with poor outcomes largely due to its unique microenvironment, which is responsible for the low response to drugs and drug-resistance phenomena. This clinical need led us to explore new therapeutic approaches for systemic PDAC treatment by the utilization of two newly synthesized biphenylnicotinamide derivatives, PTA73 and PTA34, with remarkable antitumor activity in an in vitro PDAC model. Given their poor water solubility, inclusion complexes of PTA34 and PTA73 in Hydroxy-Propil-ß-Cyclodextrin (HP-ß-CD) were prepared in solution and at the solid state. Complexation studies demonstrated that HP-ß-CD is able to form stable host-guest inclusion complexes with PTA34 and PTA73, characterized by a 1:1 apparent formation constant of 503.9 M-1 and 369.2 M-1, respectively (also demonstrated by the Job plot), and by an increase in aqueous solubility of about 150 times (from 1.95 µg/mL to 292.5 µg/mL) and 106 times (from 7.16 µg/mL to 762.5 µg/mL), in the presence of 45% w/v of HP-ß-CD, respectively. In vitro studies confirmed the high antitumor activity of the complexed PTA34 and PTA73 towards PDAC cells, the strong G2/M phase arrest followed by induction of apoptosis, and thus their eligibility for PDAC therapy.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Humanos , Corpos de Inclusão/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Microambiente Tumoral/efeitos dos fármacos , Difração de Raios X/métodos , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/farmacologia
11.
Pharmaceutics ; 12(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664186

RESUMO

The use of controlled delivery therapy in colorectal cancer (CRC) reduces toxicity and side effects. Recently, we have suggested that the Frizzled 10 (FZD10) protein, a cell surface receptor belonging to the FZD protein family that is overexpressed in CRC cells, is a novel candidate for targeting and treatment of CRC. Here, the anticancer effect of novel immuno-liposomes loaded with 5-Fluorouracil (5-FU), decorated with an antibody against FZD10 (anti-FZD10/5-FU/LPs), was evaluated in vitro on two different CRC cell lines, namely metastatic CoLo-205 and nonmetastatic CaCo-2 cells, that were found to overexpress FZD10. The anti-FZD10/5-FU/LPs obtained were extensively characterized and their preclinical therapeutic efficacy was evaluated with the MTS cell proliferation assay based on reduction of tetrazolium compound, scratch test, Field Emission Scanning Electron Microscopes (FE-SEM) investigation and immunofluorescence analysis. The results highlighted that the cytotoxic activity of 5-FU was enhanced when encapsulated in the anti-FZD10 /5-FU/LPs at the lowest tested concentrations, as compared to the free 5-FU counterparts. The immuno-liposomes proposed herein possess a great potential for selective treatment of CRC because, in future clinical applications, they can be encapsulated in gastro-resistant capsules or suppositories for oral or rectal delivery, thereby successfully reaching the intestinal tract in a minimally invasive manner.

12.
Chemistry ; 26(48): 11048-11059, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32628283

RESUMO

Efforts are made to perform an early and accurate detection of hepatocellular carcinoma (HCC) by simultaneous exploiting multiple clinically non-invasive imaging modalities. Original nanostructures derived from the combination of different inorganic domains can be used as efficient contrast agents in multimodal imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) and Au nanoparticles (NPs) possess well-established contrasting features in magnetic resonance imaging (MRI) and X-ray computed tomography (CT), respectively. HCC can be targeted by using specific carbohydrates able to recognize asialoglycoprotein receptor 1 (ASGPR1) overexpressed in hepatocytes. Here, two different thiocarbohydrate ligands were purposely designed and alternatively conjugated to the surface of Au-speckled silica-coated SPIONs NPs, to achieve two original nanostructures that could be potentially used for dual mode targeted imaging of HCC. The results indicated that the two thiocarbohydrate decorated nanostructures possess convenient plasmonic/superparamagnetic properties, well-controlled size and morphology and good selectivity for targeting ASGPR1 receptor.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Carboidratos/química , Carcinoma Hepatocelular/diagnóstico por imagem , Ouro , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Metálicas/química , Dióxido de Silício , Compostos de Sulfidrila/química , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética
13.
Sci Rep ; 10(1): 9052, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32494059

RESUMO

Dengue virus (DENV) causes 390 million infections per year. Infections can be asymptomatic or range from mild fever to severe haemorrhagic fever and shock syndrome. Currently, no effective antivirals or safe universal vaccine is available. In the present work we tested different gold nanoparticles (AuNP) coated with ligands ω-terminated with sugars bearing multiple sulfonate groups. We aimed to identify compounds with antiviral properties due to irreversible (virucidal) rather than reversible (virustatic) inhibition. The ligands varied in length, in number of sulfonated groups as well as their spatial orientation induced by the sugar head groups. We identified two candidates, a glucose- and a lactose-based ligand showing a low EC50 (effective concentration that inhibit 50% of the viral activity) for DENV-2 inhibition, moderate toxicity and a virucidal effect in hepatocytes with titre reduction of Median Tissue Culture Infectious Dose log10TCID50 2.5 and 3.1. Molecular docking simulations complemented the experimental findings suggesting a molecular rationale behind the binding between sulfonated head groups and DENV-2 envelope protein.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Ouro/química , Nanopartículas Metálicas/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Hep G2 , Hepatócitos/virologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Células Vero
14.
Pharmacol Res Perspect ; 8(3): e00585, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32378360

RESUMO

The efficacy of minoxidil (MXD) ethanolic solutions (1%-5% w/v) in the treatment of androgenetic alopecia is limited by adverse reactions. The toxicological effects of repeated topical applications of escalating dose (0.035%-3.5% w/v) and of single and twice daily doses (3.5% w/v) of a novel hydroxypropyl-ß-cyclodextrin MXD GEL formulation (MXD/HP-ß-CD) and a MXD solution were investigated in male rats. The cardiovascular effects were evaluated by telemetric monitoring of ECG and arterial pressure in free-moving rats. Ultrasonographic evaluation of cardiac morphology and function, and histopathological and biochemical analysis of the tissues, were performed. A pharmacovigilance investigation was undertaken using the EudraVigilance database for the evaluation of the potential cancer-related effects of topical MXD. Following the application of repeated escalating doses of MXD solution, cardiac hypertrophy, hypotension, enhanced serum natriuretic peptides and K+ -ion levels, serum liver biomarkers, and histological lesions including renal cancer were observed. In addition, the administration of a twice daily dose of MXD solution, at SF rat vs human = 311, caused reductions in the systolic, diastolic, and mean blood pressure of the rats (-30.76 ± 3%, -28.84 ± 4%, and -30.66 ± 5%, respectively, vs the baseline; t test P < .05). These effects were not reversible following washout of the MXD solution. Retrospective investigation showed 32 cases of cancer associated with the use of topical MXD in humans. The rats treated with MXD HP-ß-CD were less severely affected. MXD causes proliferative adverse effects. The MXD HP-ß-CD inclusion complex reduces these adverse effects.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Pressão Sanguínea/efeitos dos fármacos , Minoxidil/administração & dosagem , Neoplasias/induzido quimicamente , Administração Tópica , Alopecia/tratamento farmacológico , Animais , Eletrocardiografia , Excipientes/química , Feminino , Géis , Humanos , Masculino , Minoxidil/toxicidade , Soluções Farmacêuticas , Farmacovigilância , Ratos , Ratos Wistar , Estudos Retrospectivos
16.
Biomedicines ; 8(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370132

RESUMO

The 18 kDa translocator protein (TSPO) plays an important role in apoptotic cell death, including apoptosis induced by the hypoxia mimicking agent cobalt chloride (CoCl2). In this study, the protective effects of a high (CB86; Ki= 1.6 nM) and a low (CB204; Ki= 117.7 nM) affinity TSPO ligands were investigated in H1299 lung cancer cell line exposed to CoCl2. The lung cell line H1299 was chosen in the present study since they express TSPO and able to undergo programmed cell death. The examined cell death markers included: ATP synthase reversal, reactive oxygen species (ROS) generation, mitochondrial membrane potential (Δψm) depolarization, cellular toxicity, and cellular viability. Pretreatment of the cells with the low affinity ligand CB204 at a concentration of 100 µM suppressed significantly (p < 0.05 for all) CoCl2-induced cellular cytotoxicity (100%), ATP synthase reversal (67%), ROS generation (82%), Δψm depolarization (100%), reduction in cellular density (97%), and also increased cell viability (85%). Furthermore, the low affinity TSPO ligand CB204, was harmless when given by itself at 100 µM. In contrast, the high affinity ligand (CB86) was significantly effective only in the prevention of CoCl2-induced ROS generation (39%, p < 0.001), and showed significant cytotoxic effects when given alone at 100 µM, as reflected in alterations in ADP/ATP ratio, oxidative stress, mitochondrial membrane potential depolarization and cell death. It appears that similar to previous studies on brain-derived cells, the relatively low affinity for the TSPO target enhances the potency of TSPO ligands in the protection from hypoxic cell death. Moreover, the high affinity TSPO ligand CB86, but not the low affinity ligand CB204, was lethal to the lung cells at high concentration (100 µM). The low affinity TSPO ligand CB204 may be a candidate for the treatment of pulmonary diseases related to hypoxia, such as pulmonary ischemia and chronic obstructive pulmonary disease COPD.

17.
Int J Pharm ; 583: 119351, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339634

RESUMO

Here, polyethylene glycol (PEG)-stabilized solid lipid nanoparticles (SLNs) containing Pt(IV) prodrugs derived from kiteplatin were designed and proposed as novel nanoformulations potentially useful for the treatment of glioblastoma multiforme. Four different Pt(IV) prodrugs were synthesized, starting from kiteplatin by the addition of two carboxylate ligands with different length of the alkyl chains and lipophilicity degree, and embedded in the core of PEG-stabilized SLNs composed of cetyl palmitate. The SLNs were extensively characterized by complementary optical and morphological techniques. The results proved the formation of SLNs characterized by average size under 100 nm and dependence of drug encapsulation efficiency on the lipophilicity degree of the tested Pt(IV) prodrugs. A monolayer of immortalized human cerebral microvascular endothelial cells (hCMEC/D3) was used as in vitro model of blood-brain barrier (BBB) to evaluate the ability of the SLNs to penetrate the BBB. For this purpose, optical traceable SLNs were achieved by co-incorporation of Pt(IV) prodrugs and luminescent carbon dots (C-Dots) in the SLNs. Finally, an in vitro study was performed by using a human glioblastoma cell line (U87), to investigate on the antitumor efficiency of the SLNs and on their improved ability to be cell internalized respect to the free Pt(IV) prodrugs.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Compostos Organoplatínicos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Pró-Fármacos/administração & dosagem , Antineoplásicos/química , Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células Endoteliais/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Lipídeos/química , Nanopartículas/química , Compostos Organoplatínicos/química , Polietilenoglicóis/química , Pró-Fármacos/química , Pontos Quânticos/administração & dosagem , Pontos Quânticos/química
18.
Int J Pharm ; 574: 118922, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31836482

RESUMO

The purpose of this study was to develop a new solid paediatric formulation for propranolol hydrochloride (PR). This drug is used to treat various paediatric diseases, and recently received clearance to treat haemangioma. However, PR has a bitter salty taste that does not facilitate high rates of compliance among children, especially in liquid formulations. In addition, the solid formulations are designed for adults and often their dosage is not suitable for children that require a flexible dose based on their weight. Therefore, matrix microbeads of EUDRAGIT® E PO containing PR were manufactured to overcome these limitations. Nine different samples were prepared using the prilling-congealing technique with high yield. Using 2 nozzles, 300 and 450 µm (code n), the diameters obtained of microbeads (from 333 to 699 µm) were homogenous and appropriate to be swallowed by children. In this study, the ratio drug:matrix for the microbeads was also examined in detail: 1:25 (F1), 1:15 (F2) and 1:10 (F3) in aqueous and tert-butyl alcohol/aqueous (code t) media. Most of the examined microbeads were characterized by high percentage of encapsulation efficiency (22-100%) and drug loading (22-77 mg of drug per g of matrix) effective for the administration of low and high doses of PR. SEM analysis revealed a matrix with a radial or a spongy structure, with numerous pores that generated soft floating microbeads in aqueous solution. Release studies confirmed a low release and dissolution of the drug in artificial saliva, mainly F1n > F1 > F2nt, and a prompt dissolution in simulated gastric media. Finally, electronic tongue measurements revealed the ability of these formulations to mask the bitter drug taste, especially for the sample with a ratio 1:25 (F1n and F1). These samples were chemically and physically stable for six months. In conclusion, the projected microbeads F1, and F1n reached the goal of the study, and could be proposed as new solid oral formulations dedicated to use by children.


Assuntos
Ácidos Polimetacrílicos/química , Propranolol/química , Paladar/fisiologia , Administração Oral , Química Farmacêutica/métodos , Criança , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Nariz Eletrônico , Excipientes/química , Humanos , Microesferas , Saliva Artificial/química , Solubilidade , Comprimidos/química
19.
Cells ; 8(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349740

RESUMO

Extracellular vesicles (EVs) are involved in intercellular communication during carcinogenesis, and cancer cells are able to secrete EVs, in particular exosomes containing molecules, that can be transferred to recipient cells to induce pathological processes and significant modifications, as metastasis, increase of proliferation, and carcinogenesis evolution. FZD proteins, a family of receptors comprised in the Wnt signaling pathway, play an important role in carcinogenesis of the gastroenteric tract. Here, a still unknown role of Frizzled 10 (FZD10) protein was identified. In particular, the presence of FZD10 and FZD10-mRNA in exosomes extracted from culture medium of the untreated colorectal, gastric, hepatic, and cholangio cancer cell lines, was detected. A substantial reduction in the FZD10 and FZD10-mRNA level was achieved in FZD10-mRNA silenced cells and in their corresponding exosomes. Concomitantly, a significant decrease in viability of the silenced cells compared to their respective controls was observed. Notably, the incubation of silenced cells with the exosomes extracted from culture medium of the same untreated cells promoted the restoration of the cell viability and, also, of the FZD10 and FZD10-mRNA level, thus indicating that the FZD10 and FZD10-mRNA delivering exosomes may be potential messengers of cancer reactivation and play an active role in long-distance metastatization.


Assuntos
Exossomos/metabolismo , Receptores Frizzled/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Imunofluorescência , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Oncol ; 2019: 2715968, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275379

RESUMO

Extracellular vesicles (EVs) are involved in intercellular communication during the carcinogenesis. Our attention has been focused on small EVs (sEVs) protein content in colorectal and gastric cancer (CRC and GC). Frizzled (FZD) proteins, a family of receptors comprised in the Wnt signaling pathway, play an important role in the carcinogenesis of CRC and GC. Here, the expression of a specific FZD protein, namely, FZD-10, was investigated in the sEVs extracted from plasma of patients affected by CRC and GC as involved in canonical and noncanonical Wnt signaling in cancer stem cells with a subsequent modification of cellular heterogeneity, omics reprogramming, and tumor plasticity. The expression of FZD-10 protein in the sEVs extracted from plasma of patients affected by CRC and GC and sEVs from plasma of healthy subjects was evaluated against the level of protein Hsp70, established as EVs specific markers along with CD63 and ALIX proteins. The FZD-10 extract from sEVs isolated from plasma of the controls and the CRC or GC subjects indicated that its expression in oncological patients was higher than in the control group, while, at the end of the treatment, it reached values comparable with the average level of controls. Furthermore, the level of FZD-10 in the whole plasma was found comparable with its level in the sEVs extract. The level of FZD-10 in the sEVs represents a potential reliable biomarker with a valuable prognostic function for the diagnosis of CRC and GC and for monitoring the treatment response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA