Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Inflammation ; 45(4): 1700-1719, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35249189

RESUMO

Envenomation by Cerastes cerastes often results in local dermonecrotic lesions. While immunotherapy is effective in reversing systemic symptoms, this strategy remains deficient in counteracting the extended dermonecrosis induced from the bite site. In this study, the therapeutic effect of pharmacological drugs on the dermonecrotic activity of the venom was investigated. Venom administration caused a marked dermonecrotic lesion with increased levels of oxidative stress biomarkers (MPO, EPO, NO, H2O2, MDA, protein carbonyl, and thiol levels). Antioxidant capacity was decreased, as evidenced by reduced catalase, glutathione, and selenium levels. Histopathological analysis of skin biopsies revealed necrotic lesions accompanied by hemorrhage and epidermis thickening. The efficiency of cyproheptadine (C), dexamethasone (D), and tetracycline (T), as a monotherapy or in association, were evaluated on the dermonecrotic activity of the venom. Most of the treatments (CD, CT, DT, and CDT) largely reduced tissue necrosis to, respectively, 84.29, 87.83, 83.77, and 82.71% and significantly decreased MPO and EPO activities and NO, H2O2, MDA, and protein carbonyl levels in skin tissue homogenates. CT and CDT associations significantly increased the antioxidant status as indicated by enhanced catalase, glutathione, and selenium levels. The second challenge of the pharmacological associations was more effective in improving the oxidative/antioxidative balance. Skin tissue sections from treated animals with CT or CDT revealed tissue structure close to that observed in control animals. Therefore, the synergistic action of all tested drugs on the major pathways of inflammation (phospholipases A2, metalloproteinases, and histamine) seems to be efficient to neutralize the necrotic activity of the venom.


Assuntos
Selênio , Viperidae , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catalase , Glutationa , Peróxido de Hidrogênio , Necrose , Selênio/farmacologia , Selênio/uso terapêutico , Resultado do Tratamento , Venenos de Víboras/química
2.
Protein J ; 40(6): 799-841, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34499333

RESUMO

As expected, several new variants of Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) emerged and have been detected around the world throughout this Coronavirus Disease of 2019 (COVID-19) pandemic. Currently, there is no specific developed drug against COVID-19 and the challenge of developing effective antiviral strategies based on natural agents with different mechanisms of action becomes an urgent need and requires identification of genetic differences among variants. Such data is used to improve therapeutics to combat SARS-CoV-2 variants. Nature is known to offer many biotherapeutics from animal venoms, algae and plant that have been historically used in traditional medicine. Among these bioresources, snake venom displays many bioactivities of interest such as antiviral, antiplatelet, antithrombotic, anti-inflammatory, antimicrobial and antitumoral. COVID-19 is a viral respiratory sickness due to SARS-CoV-2 which induces thrombotic disorders due to cytokine storm, platelet hyperactivation and endothelial dysfunction. This review aims to: (1) present an overview on the infection, the developed thrombo-inflammatory responses and mechanisms of induced thrombosis of COVID-19 compared to other similar pathogenesis; (2) underline the role of natural compounds such as anticoagulant, antiplatelet and thrombolytic agents; (3) investigate the management of coagulopathy related to COVID-19 and provide insight on therapeutic such as venom compounds. We also summarize the updated advances on antiviral proteins and peptides derived from snake venoms that could weaken coagulopathy characterizing COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Peptídeos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Venenos de Serpentes/uso terapêutico , Anticoagulantes/uso terapêutico , Antivirais/química , Antivirais/uso terapêutico , COVID-19/patologia , COVID-19/virologia , Humanos , Pandemias , Peptídeos/química , SARS-CoV-2/patogenicidade , Venenos de Serpentes/química
3.
Immunobiology ; 226(4): 152108, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34247017

RESUMO

In Algeria, Androctonus australis hector scorpion envenomation remains a major problem of public health because of non-efficient therapy. The development of safe vaccine against scorpion venom could be one key strategy for the envenomation prevention. The irradiation of venom by γ-rays develops suitable immunogens which produced effective antivenom and safe vaccine. In this study, we investigated the ability of the irradiated toxic fraction (γ-FtoxG50) to induce long-term memory humoral response in immunized animals (mice and rabbits), by involving the long-lived plasma cells to prevent efficiently the lethality of scorpion envenomation. For this purpose, an appropriate immunization schedule was established in mice and rabbits using three (3) similar doses of γ-FtoxG50 associated with Alum adjuvant. Obtained results indicate that the long-term immunogenicity of γ-FtoxG50 is able to induce the long-term memory humoral response with a high level of specific antibodies. The long-term persistence of antibody levels could depend on bone marrow memory plasma cells. These cells produce continuously antibodies without antigen stimulus. Furthermore, an enhanced memory response was obtained post-repeated envenomation with toxic native venom that leads to improved protection of animals. Together, pre-existing protective antibodies and the activation of memory B-cells could induce a rapid neutralization of scorpion toxins and long-term protection against scorpion envenomation.


Assuntos
Antígenos/administração & dosagem , Imunoglobulina G/imunologia , Neurotoxinas/administração & dosagem , Plasmócitos/imunologia , Venenos de Escorpião/administração & dosagem , Vacinas/administração & dosagem , Adjuvantes de Vacinas/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Antígenos/efeitos da radiação , Medula Óssea/imunologia , Feminino , Raios gama , Memória Imunológica , Camundongos , Neurotoxinas/efeitos da radiação , Coelhos , Venenos de Escorpião/efeitos da radiação , Baço/imunologia
4.
Protein Pept Lett ; 28(4): 426-441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32798364

RESUMO

BACKGROUND: Cerastes cerastes venom contains several bioactive proteins with inhibitory potential of platelet aggregation and blood coagulation. OBJECTIVE: The current study deals with purification, characterization and determination of structural properties of Cc-PDE, the first phosphodiesterase from Cerastes cerastes venom. MATERIAL AND METHODS: The purification process consists of three successive chromatographies including G75-Sephadex size exclusion, DEAE exchange chromatography and affinity using Sildenafil as a main PDEs' specific inhibitor. The amino acid sequence of purified Cc-PDE was determined by liquid chromatography coupled off line to MALDI-TOF/TOF. Modeling and structural features were obtained using several bioinformatics tools. In vivo and in vitro antiplatelet aggregation and anticoagulant assays were performed. RESULTS: Cc-PDE (73 506.42 Da) is a 654-residue single polypeptide with 1-22 signal peptide and it is characterized by the presence of predominant basic amino acids suitable to alkaline pI (8.17). Cc-PDE structure is composed of ß-strands (17%) and α-helices (24%) and it shares a high identity with homologous snake venom PDEs. Cc-PDE hydrolyzes both Bis-p-nitrophenyl phosphate (Km = 2.60 ± 0.95 mM, Vmax = 0.017 ± 0.002569 µmol.min-1) and p-nitrophenyl phosphate (Km = 7.13 mM ± 0.04490 mM, Vmax = 0.053 ±0.012 µmol.min-1). Cc-PDE prevents ADP- and ATP-induced platelet aggregation by hydrolyzing ADP and ATP, reducing surface P-selectin expression and attenuating platelet function. In addition, Cc-PDE inhibits coagulation factors involved in the intrinsic pathway demonstrated by a significant prolongation of activated partial thromboplastin time and in vivo long-lasting anticoagulation. CONCLUSION: The obtained results revealed that Cc-PDE may have a therapeutic potential and could be a remedy for thromboembolic diseases as an alternative of anticoagulant and antiplatelet aggregation chemical origins.


Assuntos
Anticoagulantes , Plaquetas/metabolismo , Diester Fosfórico Hidrolases , Agregação Plaquetária/efeitos dos fármacos , Proteínas de Répteis , Viperidae , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Humanos , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/farmacologia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Coelhos , Proteínas de Répteis/química , Proteínas de Répteis/farmacologia , Venenos de Víboras/química , Venenos de Víboras/farmacologia
5.
Toxins (Basel) ; 12(6)2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545475

RESUMO

Elevated levels of endothelin-1 (ET-1) were recorded in sera of scorpion sting patients. However, no studies focused on the mechanism of ET-1 involvement in the pathogenesis of scorpion envenomation, particularly in the cardiovascular system which is seriously affected in severe cases of scorpion stings. Inflammation induced by Androctonus australis hector (Aah) scorpion venom in the heart together with the aorta was studied in mice pretreated with a specific endothelin A receptor (ETA-R) inhibitor. ETA-R inhibition resulted in the attenuation of the high amounts of cytokine (tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17)) recorded in the sera of envenomed mice. The recovery of the oxidative stress marker balance and matrix metalloproteinase (MMP) expression were also observed, concomitantly with the reduction of tissular neutrophil infiltration. Additionally, the cardiac and the aortic tissue alterations, and the metabolic enzymes (creatine kinase (CK) and muscle-brain isoform creatine kinase (CK-MB)) overspread into sera were significantly attenuated. Obtained results suggest the implication of endothelin throughout its ETA receptors in the inflammatory response observed in the cardiovascular components during scorpion envenomation. Further knowledge is needed to better understand the implication of the endothelin axis and to improve the therapeutic management of severe scorpion sting cases.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Endotelina-1/metabolismo , Inflamação/metabolismo , Receptor de Endotelina A/metabolismo , Picadas de Escorpião/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Doenças Cardiovasculares/prevenção & controle , Sistema Cardiovascular/efeitos dos fármacos , Modelos Animais de Doenças , Antagonistas do Receptor de Endotelina A/farmacologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Peptídeos Cíclicos/farmacologia , Receptor de Endotelina A/efeitos dos fármacos , Picadas de Escorpião/tratamento farmacológico , Venenos de Escorpião , Transdução de Sinais
6.
Inflammation ; 43(1): 155-167, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31654297

RESUMO

Systemic inflammatory response and generation of oxidative stress are known to contribute to scorpion venom-induced tissue damage. TLR receptors might represent a link between oxidative stress and inflammation; we therefore investigated whether or not TLR4 is involved in venom-induced immunopathology. The obtained results showed that pharmacological targeting of TLR4 with the selective inhibitor TAK-242 (Resatorvid) prevents the inflammatory response induced by subcutaneous administration of Androctonus australis hector (Aah) venom, as revealed by a significant decrease of neutrophil cell count in peripheral blood associated with significant decline of neutrophil degranulation and sequestration to the lung, liver, and kidney tissues. Moreover, TAK-242 administration inhibited nitrite levels increase in serum, malondialdehyde (MDA), and protein carbonyl tissue contents concomitantly with a significant increase of catalase activity and reduced glutathione (GSH) level in tissue homogenates. Furthermore, venom-induced increases in serum levels of organ dysfunction markers (lactate deshydrogenase, aminotransferase ALT and AST, creatinine and urea) were also significantly suppressed by pre-treatment with TLR4 inhibitor, concordantly with a remarkable improvement in the histological features in lung and liver tissues. The results of the present study indicate the potential role of TLR4 in venom-induced immunopathology and show the in vivo requirement of TLR4 signaling in mediating venom-induced tissue damage.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/prevenção & controle , Neutrófilos/imunologia , Venenos de Escorpião/toxicidade , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/imunologia , Animais , Catalase/metabolismo , Degranulação Celular/efeitos dos fármacos , Glutationa/análise , Inflamação/imunologia , Inflamação/patologia , Malondialdeído/análise , Camundongos , Neutrófilos/efeitos dos fármacos , Nitritos/sangue , Estresse Oxidativo/imunologia , Carbonilação Proteica/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/antagonistas & inibidores
7.
Inflammopharmacology ; 27(3): 589-601, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30604198

RESUMO

BACKGROUND: The mechanism of the inflammatory process induced by scorpion venom in the cerebrospinal tissues has not yet been completely elucidated. Therefore, we aimed to investigate the role of histamine through its H1 and H3 receptors in this process. METHODS: Histamine H1 and H3 receptor antagonists, Hydroxyzine (10 mg/kg) and Betaserc (20 mg/kg), respectively, were administered by intraperitoneal route to mice 1 h before subcutaneous envenomation with a subletal dose (0.5 mg/kg) of Androctonus australis hector venom. Cerebrospinal inflammation response was assessed 24 h after envenomation by evaluating the vascular permeability changes, inflammatory cell infiltration, oxidative/nitrosative stress marker levels (hydrogen peroxide, nitric oxide, malondialdehyde, glutathione and catalase) and by histological examination of cerebrospinal tissue. RESULTS: Envenomed mice displayed an installation of an inflammatory response marked by increased vascular permeability (76% and 68% in brain and spinal cord, respectively, in comparison to controls), inflammatory cell infiltration, increased pro-oxidant levels and decreased anti-oxidant markers (p  < 0.05 to p  < 0.001). Scorpion venom also induced structural changes in brain and spinal cord tissues. Hydroxyzine seemed to be more efficient than Betaserc in the prevention of the induced cerebrospinal inflammation response, as evidenced by the decreased vascular permeability, inflammatory cell infiltration, pro-oxidant levels, increased anti-oxidant defense (p  < 0.05 to p  < 0.001) and a reduction of the anatomo-pathological alterations. CONCLUSION: The results showed that the histamine H1 receptor is more involved in the induced central nervous system inflammatory response during scorpion envenomation.


Assuntos
Encéfalo/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H3/metabolismo , Venenos de Escorpião/efeitos adversos , Medula Espinal/patologia , Animais , Encéfalo/metabolismo , Permeabilidade Capilar/fisiologia , Catalase/metabolismo , Glutationa/metabolismo , Histamina/metabolismo , Malondialdeído/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Oxirredução , Escorpiões/metabolismo , Medula Espinal/metabolismo
8.
Eur Biophys J ; 48(1): 1-13, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30006779

RESUMO

Neurotoxins of scorpion venoms modulate ion channels. Voltage-gated potassium (KV) channels regulate the membrane potential and are involved in the activation and proliferation of immune cells. Macrophages are key components of the inflammatory response induced by scorpion venom. The present study was undertaken to investigate the effect of Androctonus australis hector (Aah) venom on KV channels in murine resident peritoneal macrophages. The cytotoxicity of the venom was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) -based assay and electrophysiological recordings were performed using the whole-cell patch clamp technique. High doses of Aah venom (50, 125, 250 and 500 µg/ml) significantly decreased cell viability, while concentrations of 0.1-25 µg/ml were not cytotoxic towards peritoneal macrophages. Electrophysiological data revealed a differential block of KV current between resting and LPS-activated macrophages. Aah venom significantly reduced KV current amplitude by 62.5 ± 4.78% (n = 8, p < 0.05), reduced the use-dependent decay of the current, decreased the degree of inactivation and decelerated the inactivation process of KV current in LPS-activated macrophages. Unlike cloned KV1.5 channels, Aah venom exerted a similar blocking effect on KV1.3 compared to KV current in LPS-activated macrophages, along with a hyperpolarizing shift in the voltage dependence of KV1.3 inactivation, indicating a direct mechanism of current inhibition by targeting KV1.3 subunits. The obtained results, demonstrating that Aah venom differentially targets KV channels in macrophages, suggest differential outcomes for their inhibitions, and that further investigations of scorpion venom immunomodulatory potential are required.


Assuntos
Fenômenos Eletrofisiológicos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Venenos de Escorpião/química , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Cinética , Macrófagos/citologia
9.
Int Immunopharmacol ; 61: 256-265, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29902709

RESUMO

Antivenom treatment has been largely used against scorpion stings. Despite their efficacy, the use of mammalian antivenoms may cause adverse effects due to the immune system activation. IgYs from hyperimmunized laying hens against venoms could be a promising alternative to equine IgGs due to the various benefits that these antibodies can provide. Here we report the preparation of specific IgYs by immunizing laying hens with Aah (Androctonus australis hector) scorpion venom. IgYs were isolated from egg yolks by water dilution and salt precipitation methods; they were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis, western blot and ELISA. The efficiency of these immunoglobulins on the pathophysiological effects induced by Aah venom was assessed by histological and metabolical analysis of the aorta and the heart. The inflammatory response was assessed by evaluating the granulocyte tissue infiltration and oxidative/nitrosative status. Results revealed high IgYs titers against Aah venom by ELISA. Overall, these IgYs seem to protect efficiently mice against envenomation and neutralized the lethal effects of scorpion venom with a high efficacy; the median effective dose (ED50) was 221 µl/2 LD50; i.e. an amount of 79.23 mg of IgY scan neutralize 1 mg of Aah venom. IgY antibodies neutralize effectively the Aah venom lethality and could prevent severe pathological effects induced by scorpion venom and could be used as an effective alternative to equine IgGs against scorpion envenoming.


Assuntos
Aorta/patologia , Galinhas/imunologia , Imunoglobulinas/uso terapêutico , Imunoterapia Adotiva/métodos , Miocárdio/patologia , Picadas de Escorpião/terapia , Venenos de Escorpião/imunologia , Animais , Antivenenos/uso terapêutico , Humanos , Imunização , Masculino , Camundongos , Camundongos Endogâmicos , Picadas de Escorpião/imunologia , Escorpiões/fisiologia
10.
Acta Trop ; 185: 307-313, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29909063

RESUMO

We previously reported that Androctonus australis hector (Aah) venom induces inflammation in several tissues, however limited information is available on its role in gastrointestinal tract. Here we evaluate the involvement of TNF-α in lipid metabolism in the small intestine after Aah envenomation. To address these issues, NMRI mice (3-month-old) were pre-treated with a TNF-α antagonist, 30 min prior to Aah venom injection. Redox status, cytotoxicity and histopathological changes were analyzed in small intestine 3 and 24 h after Aah injection. Lipid metabolism was evaluated through lipid tolerance test in sera. Lipid content in small intestine was also evaluated at different times after envenomation. Obtained results showed that Aah venom affects the intestinal integrity. This cytotoxicity could be associated with lipid peroxidation and altered or insufficient antioxidant system. These results also highlight the perturbation of lipid absorption in intestine tissue of envenomed mice. The use of TNF-α antagonist prior to Aah venom injection seems to be able to improve lipid profile, oxidative stress and antioxidant activity. These findings suggest that Aah venom induces lipid alterations in the intestinal tissue mechanisms involving of TNF- α.


Assuntos
Intestinos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Venenos de Escorpião/toxicidade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Mucosa Intestinal/metabolismo , Lipídeos/análise , Camundongos , Camundongos Endogâmicos , Fator de Necrose Tumoral alfa/fisiologia
11.
Inflammation ; 40(3): 871-883, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28251447

RESUMO

Although several studies have shown that scorpion venoms cause a systemic inflammatory response syndrome, little is known about the contribution of the hematopoietic organs. The aim of this study was to investigate the effect of Androctonus australis hector venom on the bone marrow and on local inflammatory mediators, in concordance with the systemic inflammatory reaction elicited in mice. The consequences of a direct interaction of venom with murine bone marrow cells were also assessed by in vitro study. Obtained results showed that the early systemic neutrophilia correlated with a rapid granulocyte mobilization. This response was followed by an accelerated granulopoiesis that was supported by TNF-α and IL-6 signals. In vitro data revealed that the venom exerted a proliferative effect on murine hematopoietic cells and stimulated their differentiation towards granulocyte lineage mainly through cytokine secretion. In conclusion, this study indicated that the bone marrow rapidly exerts its activity in response to the experimental envenomation via the granulopoiesis process and inflammatory mediators in concert with the development of a systemic response. The ability of venom to directly switch steady-state granulopoiesis to an accelerated state in vitro could aggravate the disturbance caused by the venom. Better understanding of the mechanisms involved may lead to the emergence of new targets to avoid cell spreading and accumulation by acting on the very early stage of the systemic inflammatory response.


Assuntos
Granulócitos/efeitos dos fármacos , Venenos de Escorpião/toxicidade , Animais , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular , Proliferação de Células , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Granulócitos/citologia , Inflamação/induzido quimicamente , Mediadores da Inflamação , Camundongos , Escorpiões , Fatores de Tempo
12.
J Biochem Mol Toxicol ; 31(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27925690

RESUMO

The present study is the first attempt to report the characterization of a nucleotidase from Cerastes cerastes venom. A 70 kDa 5'-nucleotidase (Cc-5'NTase) was purified to homogeneity. The amino acid sequence of Cc-5'NTase displayed high homology with many nucleotidases. Its activity was optimal at pH 7 with a specific hydrolytic activity toward mono-, di-, and triphosphate adenylated nucleotides. Cc-5'NTase preferentially hydrolyzed ADP and obeyed Michaelis-Menten kinetics. Among the metals and inhibitors tested, Ni2+ and Mg2+ completely potentiated enzyme activity, whereas EGTA, PMSF, iodoacetamide, vanillic acid, vanillyl mandelic acid, and 1,10-phenanthroline partially abolished its activity. Cc-5'NTase was not lethal for mice at 5 mg/kg and exhibited in vivo anticoagulant effect. It also dose-dependently inhibited adenosine diphosphate-induced platelet aggregation by converting adenosine diphosphate to adenosine and prohibited arachidonic acid-induced aggregation but was not effective on fibrinogen-induced aggregation. Cc-5'NTase could be a good tool as pharmacological molecule in thrombosis diagnostic and/or therapy.


Assuntos
5'-Nucleotidase , Plaquetas/metabolismo , Inibidores da Agregação Plaquetária , Agregação Plaquetária/efeitos dos fármacos , Proteínas de Répteis , Venenos de Víboras/química , 5'-Nucleotidase/química , 5'-Nucleotidase/isolamento & purificação , 5'-Nucleotidase/farmacocinética , Animais , Humanos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/farmacologia , Proteínas de Répteis/química , Proteínas de Répteis/isolamento & purificação , Proteínas de Répteis/farmacologia , Viperidae
13.
Exp Mol Pathol ; 102(1): 32-40, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27955986

RESUMO

Scorpion stings are mainly associated with cardiovascular disturbances that may be the cause of death. In this study, the involvement of angiotensin II (Ang II) in cardiac and aortic inflammatory response was studied. Mice were injected with Androctonus australis hector (Aah) scorpion venom (0.5mg/kg, subcutaneously), in the presence or absence of an angiotensin converting enzyme (ACE) inhibitor, captopril (15mg/kg/day/1day intraperitoneally) or an angiotensin type-1 receptor (AT1R) antagonist, valsartan (15mg/kg/day/15days, orally). In the envenomed group, results revealed severe tissue alterations with a concomitant increase of metabolic enzymes (CK and CK-MB) in sera. An important inflammatory cell (neutrophil and eosinophil) infiltration into the heart and aorta were observed, accompanied by imbalanced redox status (NO, MDA, catalase and GSH) and high cytokine levels (IL-6 and TNF-α) in sera with the expression of MMP-2 and MMP-9 metalloproteinases. However, the blockade of the actions of AngII by the ACE inhibitor or by the AT1R antagonist prevented cardiac and aortic tissue alterations, inflammatory cell infiltration, as well as the oxidative stress generation and cytokine and metalloproteinase expression. These results suggest the involvement of AngII, through its AT1R in the inflammation induced by Aah venom, in the heart and the aorta.


Assuntos
Angiotensina II/metabolismo , Aorta/metabolismo , Inflamação/metabolismo , Miocárdio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Aorta/patologia , Captopril/farmacologia , Catalase/metabolismo , Creatina Quinase Forma MB/metabolismo , Citocinas/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Eosinófilos/patologia , Glutationa/metabolismo , Inflamação/induzido quimicamente , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos , Miocárdio/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Venenos de Escorpião , Valsartana/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-27790250

RESUMO

BACKGROUND: Several studies have showed that animal venoms are a source of bioactive compounds that may inhibit the growth of cancer cells, which makes them useful agents for therapeutic applications. Recently, it was established that venom toxins from scorpions induced cytotoxic, antiproliferative and apoptogenic effects on cancer cells. Therefore, the present study aims to investigate the cytotoxic activity of Androctonus australis hector (Aah) scorpion venom and its toxic fractions (FtoxG-50 and F3) on NCI-H358 human lung cancer cells. METHODS: The cytotoxic and antiproliferative activities were estimated using MTT assay, lactate dehydrogenase release and clonogenic assays. Apoptosis was evaluated by Hoechst 33258 staining, DNA fragmentation assay and caspase-3 activity. Oxidative stress was analyzed by reactive oxygen species, nitric oxide, malondialdehyde and protein carbonyl levels along with assessment of antioxidant status. In addition, alteration of mitochondrial membrane potential was analyzed by JC1 fluorescent dye. RESULTS: The present findings showed that F3 fraction was more cytotoxic towards NCI-H358 lung cancer cells with an IC50 of 27.05 ± 0.70 µg/mL than venom alone (396.60 ± 1.33 µg/mL) and its toxic fraction FtoxG-50 (45.86 ± 0.91 µg/mL). Nevertheless, F3 fraction was not cytotoxic at these concentrations on normal human lung fibroblast MRC-5 cells. Inhibition of NCI-H358 cell proliferation after F3 fraction exposure occurred mainly by apoptosis as evidenced by damaged nuclei, significant DNA fragmentation level and caspase-3 activation in a dose dependent manner. Moreover, F3 fraction enhanced oxidative and nitrosative stress biomarkers and dissipated mitochondrial membrane potential in lung cancer cells along with significant depletion in cellular enzymatic and non-enzymatic antioxidants. Further, the apoptosis induced by F3 fraction was markedly prevented by the antioxidant N-acetylcysteine (NAC) suggesting the potential mechanism of oxidative stress. CONCLUSION: These findings suggest that F3 fraction could induce apoptosis in lung cancer cells through involvement of oxidative stress and mitochondrial dysfunction. Hence, these properties make F3 fraction a promising candidate for development of new anticancer agents.

15.
J Biochem Mol Toxicol ; 30(12): 580-587, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27271987

RESUMO

Kaliotoxin (KTX), a specific blocker of potassium channels, exerts various toxic effects due to its action on the central nervous system. Its use in experimental model could help the understanding of the cellular and molecular mechanisms involved in the neuropathological processes related to potassium channel dysfunctions. In this study, the ability of KTX to stimulate neuro-immuno-endocrine axis was investigated. As results, the intracerebroventricular injection of KTX leads to severe structural-functional alterations of both hypothalamus and thyroid. These alterations were characterized by a massive release of hormones' markers of thyroid function associated with damaged tissue which was infiltrated by inflammatory cell and an imbalanced redox status. Taken together, these data highlight that KTX is able to modulate the neuro-endocrine response after binding to its targets leading to the hypothalamus and the thyroid stimulation, probably by inflammatory response activation and the installation of oxidative stress in these organs.


Assuntos
Eosinófilos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Venenos de Escorpião/toxicidade , Escorpiões/química , Glândula Tireoide/efeitos dos fármacos , Animais , Calcitonina/biossíntese , Calcitonina/metabolismo , Catalase/metabolismo , Eosinófilos/imunologia , Glutationa/metabolismo , Hipotálamo/imunologia , Hipotálamo/metabolismo , Injeções Intraventriculares , Malondialdeído/metabolismo , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Nitrilas/metabolismo , Oxirredução , Estresse Oxidativo , Venenos de Escorpião/isolamento & purificação , Escorpiões/fisiologia , Glândula Tireoide/imunologia , Glândula Tireoide/metabolismo , Tireotropina/biossíntese , Tireotropina/metabolismo , Tiroxina/biossíntese , Tiroxina/metabolismo , Tri-Iodotironina/biossíntese , Tri-Iodotironina/metabolismo
16.
Inflamm Res ; 65(8): 623-34, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27052008

RESUMO

OBJECTIVE: Channelopathies due to the brain ion channel dysfunction is considered to be an important mechanism involved in various neurodegenerative diseases. In this study, we evaluated the ability of kaliotoxin (KTX) as K(+) channel blocker to induce neuro-inflammatory response and neurodegenerative alteration. We also investigate the effects of astaxanthin (ATX) against KTX disorders. MATERIAL AND TREATMENT: NMRI mice were injected with KTX (1 pg/kg, by i.c.v route) with or without pretreatment using ATX (80 mg/kg, o.p route). RESULTS: Results showed that KTX was detected in cerebral cortex area due to its binding to the specific receptors (immunofluorescence analysis). It induced an activation of inflammatory cascade characterized by an increase of IL-6, TNFα, NO, MDA levels and NF-κB expression associated to a decrease of GSH level. The neuroinflammatory response is accompanied with cerebral alterations and blood-brain barrier (BBB) disruption. The use of ATX prior to the KTX exerts a preventive effect not only on the neuroinflammation but also on altered tissues and the BBB disruption. CONCLUSIONS: Kaliotoxin is able to induce neurological disorders by blocking the K(+) ion channel, and ATX suppresses this alterations with down regulation of IL-6, TNF-α and NF-κB expression in the brain.


Assuntos
Fatores Imunológicos/farmacologia , Doenças do Sistema Nervoso/imunologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Catalase/metabolismo , Glutationa/metabolismo , Interleucina-6/imunologia , Malondialdeído/imunologia , Camundongos , NF-kappa B/imunologia , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Óxido Nítrico/imunologia , Bloqueadores dos Canais de Potássio , Venenos de Escorpião , Fator de Necrose Tumoral alfa/imunologia , Xantofilas/farmacologia
17.
J. venom. anim. toxins incl. trop. dis ; 22: 29, 2016. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954776

RESUMO

Background: Several studies have showed that animal venoms are a source of bioactive compounds that may inhibit the growth of cancer cells, which makes them useful agents for therapeutic applications. Recently, it was established that venom toxins from scorpions induced cytotoxic, antiproliferative and apoptogenic effects on cancer cells. Therefore, the present study aims to investigate the cytotoxic activity of Androctonus australis hector (Aah) scorpion venom and its toxic fractions (FtoxG-50 and F3) on NCI-H358 human lung cancer cells. Methods: The cytotoxic and antiproliferative activities were estimated using MTT assay, lactate dehydrogenase release and clonogenic assays. Apoptosis was evaluated by Hoechst 33258 staining, DNA fragmentation assay and caspase-3 activity. Oxidative stress was analyzed by reactive oxygen species, nitric oxide, malondialdehyde and protein carbonyl levels along with assessment of antioxidant status. In addition, alteration of mitochondrial membrane potential was analyzed by JC1 fluorescent dye. Results: The present findings showed that F3 fraction was more cytotoxic towards NCI-H358 lung cancer cells with an IC50 of 27.05 ± 0.70 μg/mL than venom alone (396.60 ± 1.33 μg/mL) and its toxic fraction FtoxG-50 (45.86 ± 0.91 μg/mL). Nevertheless, F3 fraction was not cytotoxic at these concentrations on normal human lung fibroblast MRC-5 cells. Inhibition of NCI-H358 cell proliferation after F3 fraction exposure occurred mainly by apoptosis as evidenced by damaged nuclei, significant DNA fragmentation level and caspase-3 activation in a dose dependent manner. Moreover, F3 fraction enhanced oxidative and nitrosative stress biomarkers and dissipated mitochondrial membrane potential in lung cancer cells along with significant depletion in cellular enzymatic and non-enzymatic antioxidants. Further, the apoptosis induced by F3 fraction was markedly prevented by the antioxidant N-acetylcysteine (NAC) suggesting the potential mechanism of oxidative stress. Conclusion: These findings suggest that F3 fraction could induce apoptosis in lung cancer cells through involvement of oxidative stress and mitochondrial dysfunction. Hence, these properties make F3 fraction a promising candidate for development of new anticancer agents.(AU)


Assuntos
Humanos , Biomarcadores , Linhagem Celular , Apoptose , Estresse Oxidativo , Androctonus , Proliferação de Células , Bisbenzimidazol , Neoplasias Pulmonares , Óxido Nítrico
18.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484666

RESUMO

Several studies have showed that animal venoms are a source of bioactive compounds that may inhibit the growth of cancer cells, which makes them useful agents for therapeutic applications. Recently, it was established that venom toxins from scorpions induced cytotoxic, antiproliferative and apoptogenic effects on cancer cells. Therefore, the present study aims to investigate the cytotoxic activity of Androctonus australis hector (Aah) scorpion venom and its toxic fractions (FtoxG-50 and F3) on NCI-H358 human lung cancer cells. Methods: The cytotoxic and antiproliferative activities were estimated using MTT assay, lactate dehydrogenase release and clonogenic assays. Apoptosis was evaluated by Hoechst 33258 staining, DNA fragmentation assay and caspase-3 activity. Oxidative stress was analyzed by reactive oxygen species, nitric oxide, malondialdehyde and protein carbonyl levels along with assessment of antioxidant status. In addition, alteration of mitochondrial membrane potential was analyzed by JC1 fluorescent dye. Results: The present findings showed that F3 fraction was more cytotoxic towards NCI-H358 lung cancer cells with an IC50 of 27.05 ± 0.70 g/mL than venom alone (396.60 ± 1.33 g/mL) and its toxic fraction FtoxG-50 (45.86 ± 0.91 g/mL). Nevertheless, F3 fraction was not cytotoxic at these concentrations on normal human lung fibroblast MRC-5 cells. Inhibition of NCI-H358 cell proliferation after F3 fraction exposure occurred mainly by apoptosis as evidenced by damaged nuclei, significant DNA fragmentation level and caspase-3 activation in a dose dependent manner. Moreover, F3 fraction enhanced oxidative and nitrosative stress biomarkers and dissipated mitochondrial membrane potential in lung cancer cells along with significant depletion in cellular enzymatic and non-enzymatic antioxidants. Further, the apoptosis induced by F3 fraction was markedly prevented by the antioxidant N-acetylcysteine (NAC) suggesting the potential mechanism of oxidative stress. Conclusion: These findings suggest that F3 fraction could induce apoptosis in lung cancer cells through involvement of oxidative stress and mitochondrial dysfunction. Hence, these properties make F3 fraction a promising candidate for development of new anticancer agents.


Assuntos
Animais , Citotoxinas/administração & dosagem , Citotoxinas/farmacologia , Citotoxinas/toxicidade , Citotoxinas/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Escorpiões/citologia
19.
Inflamm Res ; 64(11): 929-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26403661

RESUMO

OBJECTIVE: We previously reported that Androctonus australis hector (Aah) venom and its toxic fraction affect adipose tissue metabolism. However, the contribution of immune system and the role of adipose tissue macrophages (ATMs) in the progression of inflammation induced by scorpion venom remain largely unknown. METHODS: Here we evaluate the capacity of the toxic fraction of Aah venom (FTox-G50) to induce the expression of M1 and M2 markers genes on adipose tissue and isolated stromal vascular cells (SVC). Quantitative real-time PCR was performed on the SVC 24 h after FTox-G50 venom injection to assess the gene expressions of IL12p40, IL23, and other macrophages-associated markers. RESULTS: We found that ATM from FTox-G50-venom-injected mice markedly increased the expressions of IL-12p40 and IL-23. Furthermore, the expression of nitric oxide synthase 2 (an M1 marker) was up-regulated, but the expression of Arginase1 (an M2 marker) was not. Systemic injection of a chemical inhibitor directed against TNF-α binding reduced the expression of inflammatory M1 macrophage markers and the MAPKpk2 gene, a key mediator of inflammatory signaling. CONCLUSION: These results indicate that TNF-α is a physiological regulator of inflammation and macrophage activation induced by scorpion venom.


Assuntos
Tecido Adiposo/citologia , Citocinas/imunologia , Macrófagos/imunologia , Venenos de Escorpião/farmacologia , Tecido Adiposo/imunologia , Animais , Citocinas/antagonistas & inibidores , Citocinas/genética , Etanercepte/farmacologia , Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Fenótipo , RNA Mensageiro/metabolismo
20.
Int Immunopharmacol ; 27(1): 122-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25979759

RESUMO

Androctonus australis hector (Aah) venom and its neurotoxins may affect the neuro-endocrine immunological axis due to their binding to ionic channels of axonal membranes. This binding leads to the release of neurotransmitters and immunological mediators accompanied by pathophysiological effects. Although the hyperglycemia induced by scorpion venom is clearly established, the involved mediators in these deregulations are unknown. The strong relationship between inflammation and the wide variety of physiological processes can suggest that the activation of the inflammatory response and the massive release of IL-6 and TNF-α release induced by the venom may induce hyperglycemia and various biological disorders. We therefore investigated in this study the contribution of IL-6 and TNF-α in the modulation of inflammatory response and metabolic disorder induced by Aah venom. Obtained results revealed that Aah venom induced inflammatory response characterized by significant increase of inflammatory cells in sera and tissues homogenates accompanied by hyperglycemia and hyperinsulinemia, suggesting that the venom induced insulin resistance. It also induced severe alterations in hepatic parenchyma associated to metabolic disorders and imbalanced redox status. Cytokine antagonists injected 30 min prior to Aah venom allowed a significant reduction of inflammatory biomarker and plasma glucose levels, they also prevented metabolic disorders, oxidative stress and hepatic tissue damage induced by Aah venom. In conclusion, IL-6 and TNF-α appear to play a crucial role in the inflammatory response, hyperglycemia and associated complications to glucose metabolism disorders (carbohydrate and fat metabolism disorders, oxidative stress and hepatic damage) observed following scorpion envenoming.


Assuntos
Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Doenças Metabólicas/imunologia , Neurotoxinas/imunologia , Picadas de Escorpião/imunologia , Venenos de Escorpião/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Humanos , Imunidade/efeitos dos fármacos , Imunomodulação , Mediadores da Inflamação/imunologia , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos , Escorpiões/imunologia , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA