Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 39(10): 3548-3564, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32397836

RESUMO

The work presented in this paper describes the synthesis of two new aryl Schiff bases [(E)-N-(4-(benzyloxy)-3-methoxybenzylidene)-5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine] (ASB-1) and [(E)-N-(4-(benzyloxy)benzylidene)-5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine] (ASB-2). These compounds were characterized by different analytical techniques and then studied for DNA binding. Binding studies were carried out at neutral pH (7.0) and at 37 °C by theoretical and experimental methods including DFT, molecular docking, spectroscopy (UV-visible, fluorescence), cyclic voltammetry (CV) and viscometry. Further investigations of these compounds were done on hepatocellular carcinoma; Huh-7 cancer cell line. Binding constant, free energy change and binding site size, i.e. Kb, ΔG and n were evaluated which indicated that both ASB-1 and ASB-2 bind significantly and spontaneously with the DNA. However, data revealed relatively greater binding of ASB-1 with DNA. Spectral and voltammetric results were found supportive of each other. Binding site sizes and viscosity measurements verified the mixed binding mode of interactions as observed in molecular docking analysis, i.e. intercalation with groove binding. DNA binding studies were very well correlated with the in-vitro studies performed on Huh-7 cell line as well as normal HEK-293 cell lines. The compound ASB-1 not only showed greater binding affinity toward DNA but also showed greater anticancer potency with least IC50 value as compared to ASB-2.


Assuntos
Antineoplásicos , Tiadiazóis , Antineoplásicos/farmacologia , DNA , Células HEK293 , Humanos , Ibuprofeno/farmacologia , Simulação de Acoplamento Molecular , Bases de Schiff , Tiadiazóis/farmacologia
3.
Bioorg Chem ; 91: 103137, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400554

RESUMO

Design, synthesis and characterization of new trinary Benzocoumarin-Thiazoles-Azomethine derivatives having three bioactive scaffolds in a single structural unit were carried out. The newly synthesized molecules were investigated for the inhibitory activity on human tissue nonspecific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP) isozymes. All the tested compounds exhibited the potent inhibition profile on both isozymes of alkaline phosphatase i.e., h-TNAP and h-IAP. Molecular docking studies were performed to explore the putative binding mode of interactions of selective inhibitors. Moreover, the synthesized derivatives were evaluated against cervical cancer cell line, HeLa and a few compounds exhibited significant inhibition in the range of 21.0-69.7%. The derivatives can be potential and selective alkaline phosphatase inhibitors for future studies.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Hidrazonas/farmacologia , Tiazóis/farmacologia , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Animais , Células COS , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Cumarínicos/síntese química , Cumarínicos/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Hidrazonas/síntese química , Hidrazonas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/metabolismo
4.
Molecules ; 24(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999646

RESUMO

A series of symmetrical salicylaldehyde-bishydrazine azo molecules, 5a-5h, have been synthesized, characterized by 1H-NMR and 13C-NMR, and evaluated for their in vitro α-glucosidase and α-amylase inhibitory activities. All the synthesized compounds efficiently inhibited both enzymes. Compound 5g was the most potent derivative in the series, and powerfully inhibited both α-glucosidase and α-amylase. The IC50 of 5g against α-glucosidase was 0.35917 ± 0.0189 µM (standard acarbose IC50 = 6.109 ± 0.329 µM), and the IC50 value of 5g against α-amylase was 0.4379 ± 0.0423 µM (standard acarbose IC50 = 33.178 ± 2.392 µM). The Lineweaver-Burk plot indicated that compound 5g is a competitive inhibitor of α-glucosidase. The binding interactions of the most active analogues were confirmed through molecular docking studies. Docking studies showed that 5g interacts with the residues Trp690, Asp548, Arg425, and Glu426, which form hydrogen bonds to 5g with distances of 2.05, 2.20, 2.10 and 2.18 Å, respectively. All compounds showed high mutagenic and tumorigenic behaviors, and only 5e showed irritant properties. In addition, all the derivatives showed good antioxidant activities. The pharmacokinetic evaluation also revealed promising results.


Assuntos
Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Glucosidases/química , Animais , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Estrutura Molecular , Suínos
5.
J Photochem Photobiol B ; 189: 104-118, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30339990

RESUMO

Two new 1,3,4-thiadiazole derivatives of ibuprofen and ciprofloxacin namely {(5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine)} 1 and {(3-(5-amino-1,3,4-thiadiazol-2-yl)-1-cyclopropyl-6-fluoro-7-(piperazin-1-yl)quinolin-4(1H)-one)} 2 were synthesized and characterized by spectroscopic and elemental analysis. DFT and molecular docking were done initially for theoretical binding possibilities of the investigated compounds. In vitro DNA binding investigations were carried out with UV-visible spectroscopic, fluorescence spectroscopic, cyclic voltammetric (CV) experiments under physiological conditions of the stomach (4.7) and blood (7.4) pH and at normal body temperature (37 °C). Both theoretical and experimental results suggested spontaneous and significant intercalative binding of the compounds with DNA. Kinetic and thermodynamic parameters (Kb, ΔG) were evaluated greater for compound 2 which showed comparatively more binding and more spontaneity of 2 than 1 to bind with DNA at both pH values. Binding site sizes were found greater (n > 1) and revealed the possibility of other sites for interactions along with intercalation. Overall results for DNA binding were found more significant for 2 at Stomach (4.7) pH. Viscometric studies further verified intercalation as a prominent binding mode for both compounds. IC50 values obtained from human hepatocellular carcinoma (Huh-7) cell line studies revealed 2 as potent anticancer agent than 1 as value found 25.75 µM (lesser than 50 µM). Theoretical and experimental DNA binding studies showed good correlation with cancer cell (Huh-7) line activity of 1 and 2 and further suggested that these compounds could act as potential anti-cancer drug candidates.


Assuntos
Antineoplásicos/farmacologia , Ciprofloxacina/análogos & derivados , DNA/metabolismo , Ibuprofeno/análogos & derivados , Linhagem Celular Tumoral , Ciprofloxacina/síntese química , Humanos , Concentração de Íons de Hidrogênio , Ibuprofeno/síntese química , Substâncias Intercalantes , Cinética , Simulação de Acoplamento Molecular , Análise Espectral , Termodinâmica , Tiadiazóis/química
6.
Eur J Med Chem ; 156: 461-478, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30015078

RESUMO

In the present work we report the synthesis of new aryl pyrazole derivatives using 1,3-dicarbonyl motifs. The reaction was proceeded by the cyclization of pentane-2,4-dione (1a), 3-chloropentane-2,4-dione (1b) or ethyl 3-oxobutanoate (1c) with different aryl hydrazines. The products, which can be regarded as 1H-pyrazol-1-yl-one analogues (3a-f, 3g-o, 4a-c, 5a-b) and represent drug like molecules along with well-developed structure-activity relationships, were obtained in good to excellent yield. The structures of synthesized compounds were charcterized on the basis of FT-IR, 1H NMR, 13C NMR and mass spectroscopic data. Considering alkaline phosphatases (APs), nucleotide pyrophosphatases/phosphodiesterases (NPPs) and nucleoside triphosphate diphosphohydrolase as the molecular targets, the effects of these synthesized compounds were investigated on different isozymes of APs, NPPs and NTPDases. The data revealed that the synthesized compounds inhibited both enzymes but most of them inhibited tissue non-specific alkaline phosphatase (TNAP) more selectively. The antitumor activity results indicated that the synthesized derivatives have strong inhibitory effects on the growth of selected cell lines from different tissues such as breast, bone marrow and cervix (MCF-7, K-562 and Hela) but with varying intensities. Moreover the binding mode of interactions were explained on the basis of molecular docking and in-silico studies.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Pirazóis/farmacologia , Pirofosfatases/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Pirazóis/química , Pirofosfatases/metabolismo , Relação Estrutura-Atividade
7.
Fitoterapia ; 129: 366-382, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29617626

RESUMO

Pyrrole spiroketal alkaloids (PSAs) are a class of novel natural products that have been recently disclosed. Acortatarin A and acortatarin B, two potent antioxidative spiroalkaloids with a naturally rare morpholine moiety, are important members of this class. These spiroalkaloids are isolated from Acorus tatarinowii, Brassica campestris, Capparis spinose, bread crust, Xylaria nigripes and medicine Shensong Yangxin and could inhibit significantly the reactive oxygen species (ROS) production in high-glucose-induced mesangial cells in a time- and dose-dependent manner. Hence, these natural products are promising starting points for the formation of new therapeutics to medicate cardiovascular diseases, cancer, diabetic complications, and other diseases in which ROS are implicated. The impressive structure combined with an interesting pharmacological activity prompted synthetic chemists to construct an asymmetric synthetic strategy that could be used to access structural derivatives in addition to the larger quantities of natural products required for further biological investigations. This review summarizes the current state of the literature regarding with the synthesis of acortatarin A and B and its other family members viz. shensongine A, B and C, and pollenopyrroside A. The present review discusses the pros and cons of synthetic methodologies, which would be beneficial for further developments in the synthetic methodologies. Hopefully, this struggle pushes the reader's mind to consider new perspectives, think differently and forge new connections.


Assuntos
Alcaloides/síntese química , Furanos/síntese química , Compostos de Espiro/síntese química , Alcaloides/farmacologia , Antioxidantes/farmacologia , Furanos/farmacologia , Células Mesangiais/efeitos dos fármacos , Morfolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Compostos de Espiro/farmacologia
8.
R Soc Open Sci ; 5(9): 180837, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30839737

RESUMO

Ecto-5'-nucleotidase (e5'NT), a membrane-bound enzyme and an essential member of ecto-nucleotidases which regulates extracellular purinergic signalling. Their upregulation results in various disease conditions, for example, inflammation, hypoxia and cancer. Therefore, efforts have been made to synthesize potent and selective inhibitors of e5'NT. Here we have synthesized, characterized and evaluated six thiazole derivatives (3a-3f) as potent e5'NT inhibitors. Among all derivatives, the compound (E)-1-(4-methyl-2-(2-(pyridin-3-ylmethylene)hydrazinyl) thiazol-5-yl)ethanone (3a) exhibited maximum inhibition towards both human and rat enzymes. However, their potency against h-e5'NT was 24-fold higher than r-e5'NT. Only two compounds exhibited inhibitory behaviour towards r-e5'NT. The molecular structures of these derivatives were confirmed with the help of solid-state characterization through NMR (1H and 13C), FTIR and elemental analysis. Additionally, molecular docking was also implemented to explain putative bonding interaction between the active site of an enzyme and potent inhibitors.

9.
Eur J Med Chem ; 141: 386-403, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29032032

RESUMO

Biscoumarin derivatives, a dimeric form of coumarin, are well known derivatives of coumarin, occurred in the bioactive metabolites of marine and terrestrial organisms. On account of pharmacological and biological applications, biscoumarins have long been the subject of innumerable enzyme inhibition studies. In this review the pros and cons of enzyme inhibition studies of biscoumarins as urease inhibitors, aromatase inhibitors, NPPs, α-glucosidase inhibitors, α-amylase inhibitors, HIV-1 integrase inhibition, steroid sulfatase inhibitors and c-Met inhibitors are discussed in a systematic way. Moreover, the review discusses the structure activity relationship of biscoumarin scaffold with enzyme inhibitory potency which would unleash new avenues for further development. The purpose of the current review is to disclose the value of biscoumarins as potent and efficient enzyme inhibitor. This review provides a guideline to elaborate the diversity of biscoumarin inhibitors by exploring the effects of electronic groups linked with biscoumarin nucleus.


Assuntos
Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Animais , Aromatase/metabolismo , Cumarínicos/química , Inibidores Enzimáticos/química , Integrase de HIV/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Esteril-Sulfatase/antagonistas & inibidores , Esteril-Sulfatase/metabolismo , Urease/antagonistas & inibidores , Urease/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
10.
Steroids ; 118: 76-92, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28041953

RESUMO

Spironolactone is a well-known multi-target drug and is specifically used for the treatment of high blood pressure and heart failure. It is also used for the treatment of edema, cirrhosis of the liver, malignant, pediatric, nephrosis and primary hyperaldosteronism. Spironolactone in association with thiazide diuretics treats hypertension and in association with furosemide treats bronchopulmonary dyspepsia. The therapeutic mechanism of action of spironolactone involves binding to intracellular mineralocorticoids receptors (MRs) in kidney epithelial cells, thereby inhibiting the binding of aldosterone. Since its first synthesis in 1957 there are several synthetic approaches have been reported throughout the years, Synthetic community has devoted efforts to improve the synthesis of spironolactone and to synthesize its analogues and derivatives. This review aims to provide comprehensive insight for the synthetic endeavors devoted towards the synthesis of a versatile drug spironolactone and its analogues/derivatives.


Assuntos
Aldosterona/síntese química , Canrenona/síntese química , Espironolactona/análogos & derivados , Espironolactona/química , Espironolactona/síntese química , Aldosterona/química , Androstadienos/química , Androstenos/química , Animais , Canrenona/química , Cloranila/química , Desidroepiandrosterona/química , Eplerenona , Humanos , Estrutura Molecular , Receptores de Mineralocorticoides/metabolismo , Espironolactona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA