Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom ; 59(5): e5025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607249

RESUMO

Energy-resolved mass spectrometry (ERMS) and an isotopically labelled internal standard were successfully combined to accurately quantify a tryptic peptide despite the presence of an isobaric interference. For this purpose, electrospray ionisation tandem mass spectrometry (ESI-MS/MS) experiments were conducted into an ion trap instrument using an unconventional 8 m/z broadband isolation window, which encompassed both the tryptic peptide and its internal standard. Interference removal was assessed by determining an excitation voltage that was high enough to maintain a constant value for the analyte/internal standard peaks intensity ratio, thus ensuring accurate quantification even in the presence of isobaric contamination. Pseudo-multiple reaction monitoring (MRM) was employed above this excitation voltage to quantify the trypic peptide. The internal standard calibration model showed no lack of fit and exhibited a linear dynamic range from 0.5 µM up to 2.5 µM. The detection limit was 0.08 µM. The accuracy of the method was evaluated by quantifying the tryptic peptide of three reference samples intentionally contaminated with the isobaric interference. All the reference samples were accurately quantified with ∼1% deviation despite the isobaric contamination. Furthermore, we have demonstrated that this methodology can also be applied to quantify the isobaric peptide by standard additions down to 0.2 µM. Finally, liquid chromatography ERMS (LC ERMS) experiments yielded similar results, suggesting the potential of the proposed methodology for analysing complex samples.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização por Electrospray , Isótopos , Peptídeos
2.
Anal Bioanal Chem ; 415(29-30): 7211-7221, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864586

RESUMO

Interferences from isobaric and isomeric compounds represent a common problem in liquid chromatography coupled to mass spectrometry (LC-MS). In this paper, in-source purification and chromatographic separation were combined with the aim of identifying isobaric contamination and quantifying accurately a compound despite the presence of an isobaric co-eluted interference. This is achieved by totally fragmenting in-source the precursor ions of the isobaric interference providing then LC-pseudo-MS2 capability, which allows an accurate quantification without the need for optimizing the chromatographic conditions to separate the co-eluted interference. To illustrate this concept, mixtures of tryptic and non-tryptic peptides were used. The ratio of peak areas of the tryptic peptide and its isotopically labelled internal standard was used not only for quantification with an internal standard calibration curve but also to know (1) if an isobaric interference co-eluted with the tryptic peptide; and (2) what is the minimum cone voltage necessary to ensure the complete removal of isobaric interference. This strategy was applied to quantify the tryptic peptide of two standards with known concentrations and, intentionally contaminated with the isobaric interference. The confidence intervals of the concentrations calculated with the internal standard calibration curve were 8.0 ± 0.5 µM (prepared at 8.0 µM) and 15.7 ± 0.5 µM (prepared at 16.1 µM) that confirm the tryptic peptide can be correctly quantified by in-source purification without the need for improving the chromatographic separation from its isobaric interference.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Calibragem , Padrões de Referência
3.
Bioconjug Chem ; 34(2): 414-421, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36689988

RESUMO

Detecting cancer at the early stage of the disease is crucial to keep the best chance for successful treatment. The recent development of genomic screening, a methodology that is addressed to asymptomatic patients presumably at risk of carcinogenesis, has stimulated the quest for new tools able to signal the level of risk. Carcinogenesis has been associated to chronic oxidative stress exceeding the antioxidant defenses and leading to critical genome alteration levels. The telomeric regions are presumably the most exposed to oxidative stress due to their high concentration of guanine (i.e., the easiest oxidizable nucleic base). Accumulation of 8-oxoguanine in telomeres, thus oxidative lesions, was reportedly associated with telomeric crisis and carcinogenesis. In this study, we report on the capacity of Ru(II) polyazaaromatic complexes to photoprobe 8-oxoguanine into the human telomeric sequence with the view of developing new tools for cancer risk screening.


Assuntos
Rutênio , Humanos , Telômero , Estresse Oxidativo , Guanina
4.
Anal Chem ; 93(17): 6865-6872, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33881841

RESUMO

Antibodies not only play a major role in clinical diagnostics and biopharmaceutical analysis but also are a class of drugs that are regularly used to treat numerous diseases. The identification of antibody-epitope binding sites is then of great interest to many emerging medical and bioanalytical applications, particularly to design monoclonal antibodies (mAb) mimics taking advantage of amino acid residues involved in the binding. Among relevant antibodies, the monoclonal antibody rituximab has received significant attention as it is exploited to treat several cancers including non-Hodgkin's lymphoma and chronic lymphocytic leukemia, as well as some autoimmune disorders such as rheumatoid arthritis. The binding of rituximab to the targeted cells occurs via the recognition of the CD20 epitope. A crystallographic study has shown that the binding area, named paratope, is located at the surface of rituximab. Combining the SPOT method and the complementary surface plasmon resonance technique allowed us to detect an extended recognition domain buried in the pocket of the rituximab Fab formed by four ß-sheets. More generally, the present study offers a comprehensive approach to identify antibody-epitope binding sites.


Assuntos
Antígenos CD20 , Ressonância de Plasmônio de Superfície , Anticorpos Monoclonais Murinos , Sítios de Ligação , Epitopos , Rituximab
5.
Anal Chem ; 92(7): 5396-5403, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32200619

RESUMO

Understanding antigen-antibody interactions is important to many emerging medical and bioanalytical applications. In particular, the levels of antigen expression at the cell surface may determine antibody-mediated cell death. This parameter has a clear effect on outcome in patients undergoing immunotherapy. In this context, CD20 which is expressed in the membrane of B cells has received significant attention as target for immunotherapy of leukemia and lymphoma using the monoclonal antibody rituximab. To systematically study the impact of CD20 density on antibody recognition, we designed self-assembled monolayers that display tunable CD20 epitope densities. For this purpose, we developed in situ click chemistry to functionalize SPR sensor chips. We find that the rituximab binding affinity depends sensitively and nonmonotonously on CD20 surface density. Strongest binding, with an equilibrium dissociation constant (KD = 32 nM) close to values previously reported from in vitro analysis with B cells (apparent KD between 5 and 19 nM), was obtained for an average inter-antigen spacing of 2 nm. This distance is required for improving rituximab recognition, and in agreement with the known requirement of CD20 to form clusters to elicit a biological response. More generally, this study offers an interesting outlook in the understanding of the necessity of epitope clusters for effective mAb recognition.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos/imunologia , Química Click , Cinética , Rituximab/imunologia , Ressonância de Plasmônio de Superfície
6.
Anal Bioanal Chem ; 410(23): 5765-5777, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30046869

RESUMO

Intramolecular click-chemistry is increasingly used to generate and control the architecture of complex macromolecules including peptides. Such compounds are, however, very challenging to analyze, in particular quantitatively and also to assess their purity. In this study, tandem mass spectrometry (MS/MS) experiments were carried out with an ion trap mass spectrometer using the Survival Yield (SY) technique to analyze several mixtures of protonated, alkali and alkaline earth metal complexes of two topological linear and cyclic peptide isomers. Univariate (using a single excitation voltage) and multivariate (using several excitation voltages) calibration models have been used. The sensitivity, linearity (R2), intermediate precision (sInt) and error of predicted values (RMSEP) of external calibrations curves have been compared leading to the conclusions that: 1) quantification using tandem mass spectrometry can be performed, with very good performances, for such peptides despite isomerism, 2) quantification is also possible despite the absence of diagnostic fragment ions (possibly independently of the amino-acid sequence), 3) best results are obtained with the largest alkali cation, Cs+, while protonation is highly discouraged, 4) uni/multivariate models show similar performances, but the univariate model may be more suitable for potential applications with direct infusion by electrospray ionization (ESI-MS/MS) and/or matrix-assisted laser desorption ionization (MALDI-MS/MS). Graphical abstract ᅟ.


Assuntos
Química Click/métodos , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Calibragem , Isomerismo , Análise Multivariada , Peptídeos/síntese química , Peptídeos Cíclicos/análise , Peptídeos Cíclicos/síntese química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
J Pept Sci ; 22(8): 511-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27443976

RESUMO

A,D-substituted cyclodextrin (CDX) substituted on their primary rim side are ideal scaffolds for the macromolecular assembly and formation of templated structures. Their substitution can be achieved through various reactions. However, the use of the well-known Huisgen reaction in this context is under-reported. We present here results of the synthesis of model conjugates formed between CDX and representative peptides by click chemistry. Notably, bis-conjugation of peptides onto a unique scaffold promotes α-helix formation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Química Click/métodos , Ciclodextrinas/química , Peptídeos/química , Alcinos/química , Sequência de Aminoácidos , Azidas/química , Cobre/química , Modelos Moleculares , Conformação Proteica em alfa-Hélice
8.
J Am Soc Mass Spectrom ; 22(10): 1744-52, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21952888

RESUMO

Collision induced dissociation tandem mass spectrometry experiments were performed to unequivocally separate compounds from an isobaric mixture of two products. The Survival Yield curve was obtained and is shown to consist in a linear combination of the curves corresponding to the two components separately. For such a mixture, a plateau appears on the diagram in lieu of the continuous decrease expected allowing for the structural study of the two components separately. The width of the plateau critically relates to the fragmentation parameters of the two molecular ions, which need to be sufficiently different structurally for the plateau to be observed. However, at constant fragmentation parameters, we have observed the width significantly increases at large m/z. This makes the separation more and more efficient as isobars have larger m/z and the technique complementary to those applicable at low m/z only. We have observed that the vertical position of the plateau relates linearly to the relative concentration of the two compounds that may be useful for quantification. Repeatability was estimated at 2% on a quadrupole ion trap. An advantage of using survival yield curves only, is that a priori knowledge of the respective fragmentation patterns of the two isobars becomes unnecessary. Consequently, similar performances are obtained if fragments are isobaric, which is also demonstrated in our study. The critical case of reverse peptides, at low m/z and similar fragmentation parameters, is also presented as a limitation of the method.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Glicóis/química , Íons/química , Ácido Láctico/química , Lítio/química , Peptídeos/química , Poliésteres , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA