Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116730, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749175

RESUMO

Acute kidney injury (AKI) disrupts energy metabolism. Targeting metabolism through AMP-activated protein kinase (AMPK) may alleviate AKI. ATX-304, a pan-AMPK activator, was evaluated in C57Bl/6 mice and tubular epithelial cell (TEC) cultures. Mice received ATX-304 (1 mg/g) or control chow for 7 days before cisplatin-induced AKI (CI-AKI). Primary cultures of tubular epithelial cells (TECs) were pre-treated with ATX-304 (20 µM, 4 h) prior to exposure to cisplatin (20 µM, 23 h). ATX-304 increased acetyl-CoA carboxylase phosphorylation, indicating AMPK activation. It protected against CI-AKI measured by serum creatinine (control 0.05 + 0.03 mM vs ATX-304 0.02 + 0.01 mM, P = 0.03), western blot for neutrophil gelatinase-associated lipocalin (NGAL) (control 3.3 + 1.8-fold vs ATX-304 1.2 + 0.55-fold, P = 0.002), and histological injury (control 3.5 + 0.59 vs ATX-304 2.7 + 0.74, P = 0.03). In TECs, pre-treatment with ATX-304 protected against cisplatin-mediated injury, as measured by lactate dehydrogenase release, MTS cell viability, and cleaved caspase 3 expression. ATX-304 protection against cisplatin was lost in AMPK-null murine embryonic fibroblasts. Metabolomic analysis in TECs revealed that ATX-304 (20 µM, 4 h) altered 66/126 metabolites, including fatty acids, tricarboxylic acid cycle metabolites, and amino acids. Metabolic studies of live cells using the XFe96 Seahorse analyzer revealed that ATX-304 increased the basal TEC oxygen consumption rate by 38%, whereas maximal respiration was unchanged. Thus, ATX-304 protects against cisplatin-mediated kidney injury via AMPK-dependent metabolic reprogramming, revealing a promising therapeutic strategy for AKI.


Assuntos
Proteínas Quinases Ativadas por AMP , Injúria Renal Aguda , Cisplatino , Camundongos Endogâmicos C57BL , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Masculino , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Cultivadas , Substâncias Protetoras/farmacologia , Fosforilação , Compostos de Bifenilo , Pironas , Tiofenos
2.
Nat Commun ; 12(1): 7056, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862379

RESUMO

Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.


Assuntos
Adaptação Fisiológica , Metabolismo Energético/fisiologia , Treinamento Intervalado de Alta Intensidade , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Trifosfato de Adenosina/biossíntese , Adolescente , Adulto , Biópsia , Transporte de Elétrons/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Músculo Esquelético/citologia , Fosforilação Oxidativa , Proteoma , Qualidade de Vida , Adulto Jovem
3.
Cell Rep ; 21(6): 1624-1638, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117566

RESUMO

The archetypal T cell-dependent antigen is sheep red blood cells (SRBCs), which have defined much of what we know about humoral immunity. Early studies using solubilized or sonicated SRBCs argued that the intact structure of SRBCs was important for optimal antibody responses. However, the reason for the requirement of intact SRBCs for the response to polyvalent protein antigen remained unknown. Here, we report that the immune response to SRBCs is driven by cytosolic recognition of SRBC RNA through the RIG-I-like receptor (RLR)-mitochondrial anti-viral signaling adaptor (MAVS) pathway. Following the uptake of SRBCs by antigen-presenting cells, the MAVS signaling complex governs the differentiation of both T follicular cells and antibody-producing B cells. Importantly, the involvement of the RLR-MAVS pathway precedes that of endosomal Toll-like receptor pathways, yet both are required for optimal effect.


Assuntos
Eritrócitos/imunologia , RNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Proteína DEAD-box 58/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Imunidade Humoral/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Poli I-C/farmacologia , Ovinos , Transdução de Sinais , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Toll-Like/metabolismo
4.
Biosci Rep ; 34(6): e00151, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25312000

RESUMO

Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells.


Assuntos
Astrócitos/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Fibroblastos/metabolismo , Neurônios/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Astrócitos/citologia , Western Blotting , Células Cultivadas , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Galactose/metabolismo , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/genética , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Necrose/genética , Neurônios/citologia , Espécies Reativas de Oxigênio/metabolismo , Rotenona/metabolismo , Succinatos/metabolismo , Superóxidos/metabolismo
5.
Antioxid Redox Signal ; 19(4): 331-43, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23320803

RESUMO

AIMS: Defects in the activity of enzyme complexes of the mitochondrial respiratory chain are thought to be responsible for several disorders, including renal impairment. Gene mutations that result in complex I deficiency are the most common oxidative phosphorylation disorders in humans. To determine whether an abnormality in mitochondrial complex I per se is associated with development of renal disease, mice with a knockdown of the complex I gene, Ndufs6 were studied. RESULTS: Ndufs6 mice had a partial renal cortical complex I deficiency; Ndufs6gt/gt, 32% activity and Ndufs6gt/+, 83% activity compared with wild-type mice. Both Ndufs6gt/+ and Ndufs6gt/gt mice exhibited hallmarks of renal disease, including albuminuria, urinary excretion of kidney injury molecule-1 (Kim-1), renal fibrosis, and changes in glomerular volume, with decreased capacity to generate mitochondrial ATP and superoxide from substrates oxidized via complex I. However, more advanced renal defects in Ndufs6gt/gt mice were observed in the context of a disruption in the inner mitochondrial electrochemical potential, 3-nitrotyrosine-modified mitochondrial proteins, increased urinary excretion of 15-isoprostane F2t, and up-regulation of antioxidant defence. Juvenile Ndufs6gt/gt mice also exhibited signs of early renal impairment with increased urinary Kim-1 excretion and elevated circulating cystatin C. INNOVATION: We have identified renal impairment in a mouse model of partial complex I deficiency, suggesting that even modest deficits in mitochondrial respiratory chain function may act as risk factors for chronic kidney disease. CONCLUSION: These studies identify for the first time that complex I deficiency as the result of interruption of Ndufs6 is an independent cause of renal impairment.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Nefropatias/metabolismo , Doenças Mitocondriais/metabolismo , NADH Desidrogenase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Complexo I de Transporte de Elétrons/genética , Nefropatias/genética , Camundongos , Camundongos Knockout , Doenças Mitocondriais/genética , NADH Desidrogenase/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(16): 6165-70, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22474353

RESUMO

Mitochondrial complex I (CI) deficiency is the most common mitochondrial enzyme defect in humans. Treatment of mitochondrial disorders is currently inadequate, emphasizing the need for experimental models. In humans, mutations in the NDUFS6 gene, encoding a CI subunit, cause severe CI deficiency and neonatal death. In this study, we generated a CI-deficient mouse model by knockdown of the Ndufs6 gene using a gene-trap embryonic stem cell line. Ndufs6(gt/gt) mice have essentially complete knockout of the Ndufs6 subunit in heart, resulting in marked CI deficiency. Small amounts of wild-type Ndufs6 mRNA are present in other tissues, apparently due to tissue-specific mRNA splicing, resulting in milder CI defects. Ndufs6(gt/gt) mice are born healthy, attain normal weight and maturity, and are fertile. However, after 4 mo in males and 8 mo in females, Ndufs6(gt/gt) mice are at increased risk of cardiac failure and death. Before overt heart failure, Ndufs6(gt/gt) hearts show decreased ATP synthesis, accumulation of hydroxyacylcarnitine, but not reactive oxygen species (ROS). Ndufs6(gt/gt) mice develop biventricular enlargement by 1 mo, most pronounced in males, with scattered fibrosis and abnormal mitochondrial but normal myofibrillar ultrastructure. Ndufs6(gt/gt) isolated working heart preparations show markedly reduced left ventricular systolic function, cardiac output, and functional work capacity. This reduced energetic and functional capacity is consistent with a known susceptibility of individuals with mitochondrial cardiomyopathy to metabolic crises precipitated by stresses. This model of CI deficiency will facilitate studies of pathogenesis, modifier genes, and testing of therapeutic approaches.


Assuntos
Cardiomiopatias/genética , Doenças Mitocondriais/genética , Mutagênese Insercional , NADH Desidrogenase/genética , Splicing de RNA , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Linhagem Celular , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Perfilação da Expressão Gênica , Coração/fisiopatologia , Humanos , Técnicas In Vitro , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , NADH Desidrogenase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Am Soc Nephrol ; 20(4): 742-52, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19158353

RESUMO

Damaged mitochondria generate an excess of superoxide, which may mediate tissue injury in diabetes. We hypothesized that in diabetic nephropathy, advanced glycation end-products (AGEs) lead to increases in cytosolic reactive oxygen species (ROS), which facilitate the production of mitochondrial superoxide. In normoglycemic conditions, exposure of primary renal cells to AGEs, transient overexpression of the receptor for AGEs (RAGE) with an adenoviral vector, and infusion of AGEs to healthy rodents each induced renal cytosolic oxidative stress, which led to mitochondrial permeability transition and deficiency of mitochondrial complex I. Because of a lack of glucose-derived NADH, which is the substrate for complex I, these changes did not lead to excess production of mitochondrial superoxide; however, when we performed these experiments in hyperglycemic conditions in vitro or in diabetic rats, we observed significant generation of mitochondrial superoxide at the level of complex I, fueled by a sustained supply of NADH. Pharmacologic inhibition of AGE-RAGE-induced mitochondrial permeability transition in vitro abrogated production of mitochondrial superoxide; we observed a similar effect in vivo after inhibiting cytosolic ROS production with apocynin or lowering AGEs with alagebrium. Furthermore, RAGE deficiency prevented diabetes-induced increases in renal mitochondrial superoxide and renal cortical apoptosis in mice. Taken together, these studies suggest that AGE-RAGE-induced cytosolic ROS production facilitates mitochondrial superoxide production in hyperglycemic environments, providing further evidence of a role for the advanced glycation pathway in the development and progression of diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Produtos Finais de Glicação Avançada/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/fisiologia , Superóxidos/metabolismo , Animais , Transporte de Elétrons , Feminino , Rim/fisiopatologia , Córtex Renal/fisiopatologia , Fosforilação Oxidativa , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada
8.
Cardiovasc Res ; 72(1): 112-23, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16890211

RESUMO

OBJECTIVE: Reactive oxygen species (ROS) such as superoxide have been linked to the hypertrophic response of the heart to stimuli including angiotensin II (AngII), mechanical stretch, and pressure overload. We have previously demonstrated that cGMP and protein kinase G mediate the antihypertrophic actions of the natriuretic peptides in rat cardiomyocytes and isolated whole hearts. The impact of natriuretic peptides on cardiac ROS generation, however, has not been investigated. We tested the hypothesis that reduced superoxide accumulation contributes to the antihypertrophic action of atrial natriuretic peptide (ANP). METHODS: Neonatal rat cardiomyocytes were cultured in serum-free medium with and without AngII (1 micromol/L) or endothelin-1 (ET(1), 60 nmol/L) in the presence and absence of ANP (1 micromol/L) or tempol (100 micromol/L). Hypertrophic responses, cardiomyocyte superoxide generation, and cardiomyocyte expression of NADPH oxidase were determined. RESULTS: AngII induced increases in cardiomyocyte size (to 176 +/- 9% n = 8 p < 0.001, at 48 h), beta-myosin heavy chain expression (to 4.0 +/- 1.6-fold n = 6 p < 0.05, at 48 h), c-fos expression (to 1.9 +/- 0.5-fold n = 7 p < 0.01, at 6 h), superoxide generation (to 181+/-21% n = 8 p < 0.005, at 24 h), and expression of the gp91phox subunit of NADPH oxidase (to 2.4 +/- 0.5-fold n = 7 p < 0.05, at 48 h). These effects were all significantly inhibited by ANP: cardiomyocyte size, beta-myosin heavy chain expression, c-fos expression, superoxide generation and gp91phox expression were reduced to 107 +/- 5% (n = 5 p < 0.05), 1.2 +/- 0.2-fold (n = 6 p < 0.05), 0.9 +/- 0.2-fold (n = 7 p < 0.05), 141 +/- 21% (n = 8 p < 0.05), and to 1.0 +/- 0.5-fold (n = 7 p < 0.05), respectively. These effects were mimicked by tempol. ANP and tempol also significantly inhibited ET1-induced increases in cardiomyocyte size and superoxide generation, but had no effect on markers of hypertrophy when studied alone. CONCLUSION: This data indicates that the antihypertrophic actions of ANP are accompanied by reduced levels of superoxide, suggesting an antioxidant action contributes to the antihypertrophic actions of ANP.


Assuntos
Antioxidantes/farmacologia , Fator Natriurético Atrial/farmacologia , Miócitos Cardíacos/metabolismo , Angiotensina II/farmacologia , Animais , Animais Recém-Nascidos , Crescimento Celular/efeitos dos fármacos , Células Cultivadas , Óxidos N-Cíclicos/farmacologia , Endotelina-1/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Genes fos , Miócitos Cardíacos/efeitos dos fármacos , Cadeias Pesadas de Miosina/genética , NADPH Oxidases/genética , Ratos , Ratos Sprague-Dawley , Marcadores de Spin , Superóxidos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA