Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Commun Signal ; 22(1): 317, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849813

RESUMO

BACKGROUND: Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-ß plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFß, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. METHODS: Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in a second and third independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. RESULTS: Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We identified ligand-receptor pairs in three independent datasets and found involvement of the Alzheimer's disease risk genes APP and APOE across datasets. Most of the signaling mediators of these interactions were not significantly differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had decreased TF activity in Alzheimer's disease, along with decreased WNT and p53 pathway activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and increased TF activity of NFIL3, an NFkB signaling-associated transcription factor. CONCLUSIONS: Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.


Assuntos
Doença de Alzheimer , NF-kappa B , Neuroglia , Neurônios , Proteína Supressora de Tumor p53 , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Humanos , Neurônios/metabolismo , Neurônios/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , NF-kappa B/metabolismo , Transdução de Sinais , Comunicação Celular/genética , Via de Sinalização Wnt
2.
FEBS Open Bio ; 14(5): 803-830, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531616

RESUMO

Drug repurposing is promising because approving a drug for a new indication requires fewer resources than approving a new drug. Signature reversion detects drug perturbations most inversely related to the disease-associated gene signature to identify drugs that may reverse that signature. We assessed the performance and biological relevance of three approaches for constructing disease-associated gene signatures (i.e., limma, DESeq2, and MultiPLIER) and prioritized the resulting drug repurposing candidates for four low-survival human cancers. Our results were enriched for candidates that had been used in clinical trials or performed well in the PRISM drug screen. Additionally, we found that pamidronate and nimodipine, drugs predicted to be efficacious against the brain tumor glioblastoma (GBM), inhibited the growth of a GBM cell line and cells isolated from a patient-derived xenograft (PDX). Our results demonstrate that by applying multiple disease-associated gene signature methods, we prioritized several drug repurposing candidates for low-survival cancers.


Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Humanos , Antineoplásicos/farmacologia , Animais , Linhagem Celular Tumoral , Camundongos , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Perfilação da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias/genética , Neoplasias/tratamento farmacológico , Transcriptoma/genética , Transcriptoma/efeitos dos fármacos
3.
PLoS One ; 19(1): e0296328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165902

RESUMO

The SET binding protein 1 (SETBP1) gene encodes a transcription factor (TF) involved in various cellular processes. Variants in SETBP1 can result in three different diseases determined by the introduction (germline vs. somatic) and location of the variant. Germline variants cause the ultra-rare pediatric Schinzel Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disorder (SETBP1-HD), characterized by severe multisystemic abnormalities with neurodegeneration or a less severe brain phenotype accompanied by hypotonia and strabismus, respectively. Somatic variants in SETBP1 are associated with hematological malignancies and cancer development in other tissues in adults. To better understand the tissue-specific mechanisms involving SETBP1, we analyzed publicly available RNA-sequencing (RNA-seq) data from the Genotype-Tissue Expression (GTEx) project. We found SETBP1 and its known target genes were widely expressed across 31 adult human tissues. K-means clustering identified three distinct expression patterns of SETBP1 targets across tissues. Functional enrichment analysis (FEA) of each cluster revealed gene sets related to transcriptional regulation, DNA binding, and mitochondrial function. TF activity analysis of SETBP1 and its target TFs revealed tissue-specific TF activity, underscoring the role of tissue context-driven regulation and suggesting its impact in SETBP1-associated disease. In addition to uncovering tissue-specific molecular signatures of SETBP1 expression and TF activity, we provide a Shiny web application to facilitate exploring TF activity across human tissues for 758 TFs. This study provides insight into the landscape of SETBP1 expression and TF activity across 31 non-diseased human tissues and reveals tissue-specific expression and activity of SETBP1 and its targets. In conjunction with the web application we constructed, our framework enables researchers to generate hypotheses related to the role tissue backgrounds play with respect to gene expression and TF activity in different disease contexts.


Assuntos
Proteínas de Transporte , Proteínas Nucleares , Humanos , Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Anormalidades Craniofaciais/genética , Expressão Gênica , Deficiência Intelectual/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
BMC Pharmacol Toxicol ; 25(1): 5, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167211

RESUMO

BACKGROUND: Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified that women were more likely to experience drug adverse events (i.e., any unintended effects of medication), and men were more likely to experience adverse events that resulted in hospitalization or death. These sex-biased adverse events (SBAEs) are due to many factors not entirely understood, including differences in body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters. METHODS: We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System (FAERS) database. Next, we evaluated sex-specific gene expression of the known drug targets and metabolism enzymes for those SBAE-associated drugs. We also constructed sex-specific tissue gene-regulatory networks to determine if these known drug targets and metabolism enzymes from the SBAE-associated drugs had sex-specific gene-regulatory network properties and predicted regulatory relationships. RESULTS: We identified liver-specific gene-regulatory differences for drug metabolism genes between males and females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In addition, we found that ~ 85% of SBAE-associated drug targets had sex-biased gene expression or were core genes of sex- and tissue-specific network communities, significantly higher than randomly selected drug targets. Lastly, we provide the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource for the research community. CONCLUSIONS: Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism genes that are differentially expressed and regulated between males and females. These SBAE-associated drug metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict SBAEs.


Assuntos
Regulação da Expressão Gênica , Fígado , Humanos , Masculino , Feminino , Fígado/metabolismo , Farmacovigilância , Expressão Gênica
5.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873221

RESUMO

Background: The SET binding protein 1 (SETBP1) gene encodes a transcription factor (TF) involved in various cellular processes. Distinct SETBP1 variants have been linked to three different diseases. Germline variants cause the ultra-rare pediatric Schinzel Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disorder (SETBP1-HD), characterized by severe multisystemic abnormalities with neurodegeneration or a less severe brain phenotype accompanied by hypotonia and strabismus, respectively. Somatic variants in SETBP1 are associated with hematological malignancies and cancer development in other tissues in adults. Results: To better understand the tissue-specific mechanisms involving SETBP1, we analyzed publicly available RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project. We found SETBP1, and its known target genes were widely expressed across 31 adult human tissues. K-means clustering identified three distinct expression patterns of SETBP1 targets across tissues. Functional enrichment analysis (FEA) of each cluster revealed gene sets related to transcription regulation, DNA binding, and mitochondrial function. TF activity analysis of SETBP1 and its target TFs revealed tissue-specific TF activity, underscoring the role of tissue context-driven regulation and suggesting its impact in SETBP1-associated disease. In addition to uncovering tissue-specific molecular signatures of SETBP1 expression and TF activity, we provide a Shiny web application to facilitate exploring TF activity across human tissues for 758 TFs. Conclusions: This study provides insight into the landscape of SETBP1 expression and TF activity across 31 non-diseased human tissues and reveals tissue-specific expression and activity of SETBP1 and its targets. In conjunction with the web application we constructed, our framework enables researchers to generate hypotheses related to the role tissue backgrounds play with respect to gene expression and TF activity in different disease contexts.

6.
JCO Precis Oncol ; 7: e2300261, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37824797

RESUMO

Given the high attrition rate of de novo drug discovery and limited efficacy of single-agent therapies in cancer treatment, combination therapy prediction through in silico drug repurposing has risen as a time- and cost-effective alternative for identifying novel and potentially efficacious therapies for cancer. The purpose of this review is to provide an introduction to computational methods for cancer combination therapy prediction and to summarize recent studies that implement each of these methods. A systematic search of the PubMed database was performed, focusing on studies published within the past 10 years. Our search included reviews and articles of ongoing and retrospective studies. We prioritized articles with findings that suggest considerations for improving combination therapy prediction methods over providing a meta-analysis of all currently available cancer combination therapy prediction methods. Computational methods used for drug combination therapy prediction in cancer research include networks, regression-based machine learning, classifier machine learning models, and deep learning approaches. Each method class has its own advantages and disadvantages, so careful consideration is needed to determine the most suitable class when designing a combination therapy prediction method. Future directions to improve current combination therapy prediction technology include incorporation of disease pathobiology, drug characteristics, patient multiomics data, and drug-drug interactions to determine maximally efficacious and tolerable drug regimens for cancer. As computational methods improve in their capability to integrate patient, drug, and disease data, more comprehensive models can be developed to more accurately predict safe and efficacious combination drug therapies for cancer and other complex diseases.


Assuntos
Neoplasias , Humanos , Descoberta de Drogas , Aprendizado de Máquina , Metanálise como Assunto , Neoplasias/tratamento farmacológico , Estudos Retrospectivos
7.
Cancer Rep (Hoboken) ; 6(12): e1902, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37680168

RESUMO

BACKGROUND: Cancer is a complex disease that is the second leading cause of death in the United States. Despite research efforts, the ability to manage cancer and select optimal therapeutic responses for each patient remains elusive. Chromosomal instability (CIN) is primarily a product of segregation errors wherein one or many chromosomes, in part or whole, vary in number. CIN is an enabling characteristic of cancer, contributes to tumor-cell heterogeneity, and plays a crucial role in the multistep tumorigenesis process, especially in tumor growth and initiation and in response to treatment. AIMS: Multiple studies have reported different metrics for analyzing copy number aberrations as surrogates of CIN from DNA copy number variation data. However, these metrics differ in how they are calculated with respect to the type of variation, the magnitude of change, and the inclusion of breakpoints. Here we compared metrics capturing CIN as either numerical aberrations, structural aberrations, or a combination of the two across 33 cancer data sets from The Cancer Genome Atlas (TCGA). METHODS AND RESULTS: Using CIN inferred by methods in the CINmetrics R package, we evaluated how six copy number CIN surrogates compared across TCGA cohorts by assessing each across tumor types, as well as how they associate with tumor stage, metastasis, and nodal involvement, and with respect to patient sex. CONCLUSIONS: We found that the tumor type impacts how well any two given CIN metrics correlate. While we also identified overlap between metrics regarding their association with clinical characteristics and patient sex, there was not complete agreement between metrics. We identified several cases where only one CIN metric was significantly associated with a clinical characteristic or patient sex for a given tumor type. Therefore, caution should be used when describing CIN based on a given metric or comparing it to other studies.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Instabilidade Cromossômica , Neoplasias/genética
8.
Cancer Rep (Hoboken) ; 6(9): e1874, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37533331

RESUMO

BACKGROUND: Preclinical models like cancer cell lines and patient-derived xenografts (PDXs) are vital for studying disease mechanisms and evaluating treatment options. It is essential that they accurately recapitulate the disease state of interest to generate results that will translate in the clinic. Prior studies have demonstrated that preclinical models do not recapitulate all biological aspects of human tissues, particularly with respect to the tissue of origin gene expression signatures. Therefore, it is critical to assess how well preclinical model gene expression profiles correlate with human cancer tissues to inform preclinical model selection and data analysis decisions. AIMS: Here we evaluated how well preclinical models recapitulate human cancer and non-diseased tissue gene expression patterns in silico with respect to the full gene expression profile as well as subsetting by the most variable genes, genes significantly correlated with tumor purity, and tissue-specific genes. METHODS: By using publicly available gene expression profiles across multiple sources, we evaluated cancer cell line and patient-derived xenograft recapitulation of tumor and non-diseased tissue gene expression profiles in silico. RESULTS: We found that using the full gene set improves correlations between preclinical model and tissue global gene expression profiles, confirmed that glioblastoma (GBM) PDX global gene expression correlation to GBM tumor global gene expression outperforms GBM cell line to GBM tumor global gene expression correlations, and demonstrated that preclinical models in our study often failed to reproduce tissue-specific expression. While including additional genes for global gene expression comparison between cell lines and tissues decreases the overall correlation, it improves the relative rank between a cell line and its tissue of origin compared to other tissues. Our findings underscore the importance of using the full gene expression set measured when comparing preclinical models and tissues and confirm that tissue-specific patterns are better preserved in GBM PDX models than in GBM cell lines. CONCLUSION: Future studies can build on these findings to determine the specific pathways and gene sets recapitulated by particular preclinical models to facilitate model selection for a given study design or goal.


Assuntos
Glioblastoma , Transcriptoma , Humanos , Xenoenxertos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Glioblastoma/patologia
9.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37362157

RESUMO

Background: Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified that women were more likely to experience drug adverse events (i.e., any unintended effects of medication), and men were more likely to experience adverse events that resulted in hospitalization or death. These sex-biased adverse events (SBAEs) are due to many factors not entirely understood, including differences in body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters. Methods: We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System (FAERS) database. Next, we evaluated sex-specific gene expression of the known drug targets and metabolism enzymes for those SBAE-associated drugs. We also constructed sex-specific tissue gene-regulatory networks to determine if these known drug targets and metabolism enzymes from the SBAE-associated drugs had sex-specific gene-regulatory network properties and predicted regulatory relationships. Results: We identified liver-specific gene-regulatory differences for drug metabolism genes between males and females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In addition, we found that ~85% of SBAE-associated drug targets had sex-biased gene expression or were core genes of sex- and tissue-specific network communities, significantly higher than randomly selected drug targets. Lastly, we provide the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource for the research community. Conclusions: Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism genes that are differentially expressed and regulated between males and females. These SBAE-associated drug metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict SBAEs.

10.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292608

RESUMO

Background: Cancer is a complex disease that is the second leading cause of death in the United States. Despite research efforts, the ability to manage cancer and select optimal therapeutic responses for each patient remains elusive. Chromosomal instability (CIN) is primarily a product of segregation errors wherein one or many chromosomes, in part or whole, vary in number. CIN is an enabling characteristic of cancer, contributes to tumor-cell heterogeneity, and plays a crucial role in the multistep tumorigenesis process, especially in tumor growth and initiation and in response to treatment. Aims: Multiple studies have reported different metrics for analyzing copy number aberrations as surrogates of CIN from DNA copy number variation data. However, these metrics differ in how they are calculated with respect to the type of variation, the magnitude of change, and the inclusion of breakpoints. Here we compared metrics capturing CIN as either numerical aberrations, structural aberrations, or a combination of the two across 33 cancer data sets from The Cancer Genome Atlas (TCGA). Methods and results: Using CIN inferred by methods in the CINmetrics R package, we evaluated how six copy number CIN surrogates compared across TCGA cohorts by assessing each across tumor types, as well as how they associate with tumor stage, metastasis, and nodal involvement, and with respect to patient sex. Conclusions: We found that the tumor type impacts how well any two given CIN metrics correlate. While we also identified overlap between metrics regarding their association with clinical characteristics and patient sex, there was not complete agreement between metrics. We identified several cases where only one CIN metric was significantly associated with a clinical characteristic or patient sex for a given tumor type. Therefore, caution should be used when describing CIN based on a given metric or comparing it to other studies.

11.
PeerJ ; 11: e15244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123011

RESUMO

Genomic instability is an important hallmark of cancer and more recently has been identified in others like neurodegenrative diseases. Chromosomal instability, as a measure of genomic instability, has been used to characterize clinical and biological phenotypes associated with these diseases by measuring structural and numerical chromosomal alterations. There have been multiple chromosomal instability scores developed across many studies in the literature; however, these scores have not been compared because of the lack of a single tool available to calculate and facilitate these various metrics. Here, we provide an R package CINmetrics, that calculates six different chromosomal instability scores and allows direct comparison between them. We also demonstrate how these scores differ by applying CINmetrics to breast cancer data from The Cancer Genome Atlas (TCGA). The package is available on CRAN at https://cran.rproject.org/package=CINmetrics and on GitHub at https://github.com/lasseignelab/CINmetrics.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Variações do Número de Cópias de DNA/genética , Instabilidade Cromossômica/genética , Instabilidade Genômica
12.
Mol Med ; 29(1): 67, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217845

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent monogenic human diseases. It is mostly caused by pathogenic variants in PKD1 or PKD2 genes that encode interacting transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2). Among many pathogenic processes described in ADPKD, those associated with cAMP signaling, inflammation, and metabolic reprogramming appear to regulate the disease manifestations. Tolvaptan, a vasopressin receptor-2 antagonist that regulates cAMP pathway, is the only FDA-approved ADPKD therapeutic. Tolvaptan reduces renal cyst growth and kidney function loss, but it is not tolerated by many patients and is associated with idiosyncratic liver toxicity. Therefore, additional therapeutic options for ADPKD treatment are needed. METHODS: As drug repurposing of FDA-approved drug candidates can significantly decrease the time and cost associated with traditional drug discovery, we used the computational approach signature reversion to detect inversely related drug response gene expression signatures from the Library of Integrated Network-Based Cellular Signatures (LINCS) database and identified compounds predicted to reverse disease-associated transcriptomic signatures in three publicly available Pkd2 kidney transcriptomic data sets of mouse ADPKD models. We focused on a pre-cystic model for signature reversion, as it was less impacted by confounding secondary disease mechanisms in ADPKD, and then compared the resulting candidates' target differential expression in the two cystic mouse models. We further prioritized these drug candidates based on their known mechanism of action, FDA status, targets, and by functional enrichment analysis. RESULTS: With this in-silico approach, we prioritized 29 unique drug targets differentially expressed in Pkd2 ADPKD cystic models and 16 prioritized drug repurposing candidates that target them, including bromocriptine and mirtazapine, which can be further tested in-vitro and in-vivo. CONCLUSION: Collectively, these results indicate drug targets and repurposing candidates that may effectively treat pre-cystic as well as cystic ADPKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Reposicionamento de Medicamentos , Expressão Gênica , Rim/metabolismo , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/complicações , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Tolvaptan/farmacologia , Tolvaptan/uso terapêutico , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
13.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37090499

RESUMO

Preclinical models like cancer cell lines and patient-derived xenografts (PDXs) are vital for studying disease mechanisms and evaluating treatment options. It is essential that they accurately recapitulate the disease state of interest to generate results that will translate in the clinic. Prior studies have demonstrated that preclinical models do not recapitulate all biological aspects of human tissues, particularly with respect to the tissue of origin gene expression signatures. Therefore, it is critical to assess how well preclinical model gene expression profiles correlate with human cancer tissues to inform preclinical model selection and data analysis decisions. Here we evaluated how well preclinical models recapitulate human cancer and non-diseased tissue gene expression patterns in silico with respect to the full gene expression profile as well as subsetting by the most variable genes, genes significantly correlated with tumor purity, and tissue-specific genes by using publicly available gene expression profiles across multiple sources. We found that using the full gene set improves correlations between preclinical model and tissue global gene expression profiles, confirmed that GBM PDX global gene expression correlation to GBM tumor global gene expression outperforms GBM cell line to GBM tumor global gene expression correlations, and demonstrated that preclinical models in our study often failed to reproduce tissue-specific expression. While including additional genes for global gene expression comparison between cell lines and tissues decreases the overall correlation, it improves the relative rank between a cell line and its tissue of origin compared to other tissues. Our findings underscore the importance of using the full gene expression set measured when comparing preclinical models and tissues and confirm that tissue-specific patterns are better preserved in GBM PDX models than in GBM cell lines. Future studies can build on these findings to determine the specific pathways and gene sets recapitulated by particular preclinical models to facilitate model selection for a given study design or goal.

14.
Heliyon ; 8(4): e09239, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35469332

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease and affects persons of all races, ethnic groups, and sexes. The disease is characterized by neuronal loss leading to cognitive decline and memory loss. There is no cure and the effectiveness of existing treatments is limited and depends on the time of diagnosis. The long prodromal period, during which patients' ability to live a normal life is not affected despite neuronal loss, often leads to a delayed diagnosis because it can be mistaken for normal aging of the brain. In order to make a substantial impact on AD patient survival, early diagnosis may provide a greater therapeutic window for future therapies to slow AD-associated neurodegeneration. Current gold standards for disease detection include magnetic resonance imaging and positron emission tomography scans, which visualize amyloid ß and phosphorylated tau depositions and aggregates. Liquid biopsies, already an active field of research in precision oncology, are hypothesized to provide early disease detection through minimally or non-invasive sample collection techniques. Liquid biopsies in AD have been studied in cerebrospinal fluid, blood, ocular, oral, and olfactory fluids. However, most of the focus has been on blood and cerebrospinal fluid due to biomarker specificity and sensitivity attributed to the effects of the blood-brain barrier and inter-laboratory variation during sample collection. Many studies have identified amyloid ß and phosphorylated tau levels as putative biomarkers, however, advances in next-generation sequencing-based liquid biopsy methods have led to significant interest in identifying nucleic acid species associated with AD from liquid tissues. Differences in cell-free RNAs and DNAs have been described as potential biomarkers for AD and hold the potential to affect disease diagnosis, treatment, and future research avenues.

15.
Biol Sex Differ ; 13(1): 13, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337371

RESUMO

Sex differences are essential factors in disease etiology and manifestation in many diseases such as cardiovascular disease, cancer, and neurodegeneration [33]. The biological influence of sex differences (including genomic, epigenetic, hormonal, immunological, and metabolic differences between males and females) and the lack of biomedical studies considering sex differences in their study design has led to several policies. For example, the National Institute of Health's (NIH) sex as a biological variable (SABV) and Sex and Gender Equity in Research (SAGER) policies to motivate researchers to consider sex differences [204]. However, drug repurposing, a promising alternative to traditional drug discovery by identifying novel uses for FDA-approved drugs, lacks sex-aware methods that can improve the identification of drugs that have sex-specific responses [7, 11, 14, 33]. Sex-aware drug repurposing methods either select drug candidates that are more efficacious in one sex or deprioritize drug candidates based on if they are predicted to cause a sex-bias adverse event (SBAE), unintended therapeutic effects that are more likely to occur in one sex. Computational drug repurposing methods are encouraging approaches to develop for sex-aware drug repurposing because they can prioritize sex-specific drug candidates or SBAEs at lower cost and time than traditional drug discovery. Sex-aware methods currently exist for clinical, genomic, and transcriptomic information [1, 7, 155]. They have not expanded to other data types, such as DNA variation, which has been beneficial in other drug repurposing methods that do not consider sex [114]. Additionally, some sex-aware methods suffer from poorer performance because a disproportionate number of male and female samples are available to train computational methods [7]. However, there is development potential for several different categories (i.e., data mining, ligand binding predictions, molecular associations, and networks). Low-dimensional representations of molecular association and network approaches are also especially promising candidates for future sex-aware drug repurposing methodologies because they reduce the multiple hypothesis testing burden and capture sex-specific variation better than the other methods [151, 159]. Here we review how sex influences drug response, the current state of drug repurposing including with respect to sex-bias drug response, and how model organism study design choices influence drug repurposing validation.


Assuntos
Reposicionamento de Medicamentos , Neoplasias , Reposicionamento de Medicamentos/métodos , Feminino , Humanos , Masculino , Caracteres Sexuais , Transcriptoma
16.
Hum Cell ; 35(1): 15-22, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34694568

RESUMO

Epilepsy is one of the most common diseases of the central nervous system, impacting nearly 50 million people around the world. Heterogeneous in nature, epilepsy presents in children and adults alike. Currently, surgery is one treatment approach that can completely cure epilepsy. However, not all individuals are eligible for surgical procedures or have successful outcomes. In addition to surgical approaches, antiepileptic drugs (AEDs) have also allowed individuals with epilepsy to achieve freedom from seizures. Others have found treatment through nonpharmacologic approaches such as vagus nerve stimulation, or responsive neurostimulation. Difficulty in accessing samples of human brain tissue along with advances in sequencing technology have driven researchers to investigate sampling liquid biopsies in blood, serum, plasma, and cerebrospinal fluid within the context of epilepsy. Liquid biopsies provide minimal or non-invasive sample collection approaches and can be assayed relatively easily across multiple time points, unlike tissue-based sampling. Various efforts have investigated circulating nucleic acids from these samples including microRNAs, cell-free DNA, transfer RNAs, and long non-coding RNAs. Here, we review nucleic acid-based liquid biopsies in epilepsy to improve understanding of etiology, diagnosis, prediction, and therapeutic monitoring.


Assuntos
Epilepsia/diagnóstico , Epilepsia/patologia , Biópsia Líquida/métodos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Epilepsia/etiologia , Epilepsia/terapia , Humanos , RNA/sangue , RNA/líquido cefalorraquidiano
17.
Cell Adh Migr ; 15(1): 101-115, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843470

RESUMO

The multifaceted roles of metabolism in invasion have been investigated across many cancers. The brain tumor glioblastoma (GBM) is a highly invasive and metabolically plastic tumor with an inevitable recurrence. The neuronal glucose transporter 3 (GLUT3) was previously reported to correlate with poor glioma patient survival and be upregulated in GBM cells to promote therapeutic resistance and survival under restricted glucose conditions. It has been suggested that the increased glucose uptake mediated by GLUT3 elevation promotes survival of circulating tumor cells to facilitate metastasis. Here we suggest a more direct role for GLUT3 in promoting invasion that is not dependent upon changes in cell survival or metabolism. Analysis of glioma datasets demonstrated that GLUT3, but not GLUT1, expression was elevated in invasive disease. In human xenograft derived GBM cells, GLUT3, but not GLUT1, elevation significantly increased invasion in transwell assays, but not growth or migration. Further, there were no changes in glycolytic metabolism that correlated with invasive phenotypes. We identified the GLUT3 C-terminus as mediating invasion: substituting the C-terminus of GLUT1 for that of GLUT3 reduced invasion. RNA-seq analysis indicated changes in extracellular matrix organization in GLUT3 overexpressing cells, including upregulation of osteopontin. Together, our data suggest a role for GLUT3 in increasing tumor cell invasion that is not recapitulated by GLUT1, is separate from its role in metabolism and survival as a glucose transporter, and is likely broadly applicable since GLUT3 expression correlates with metastasis in many solid tumors.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Osteopontina/metabolismo , RNA-Seq
18.
Am J Hum Genet ; 106(5): 632-645, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330418

RESUMO

We conducted genome sequencing to search for rare variation contributing to early-onset Alzheimer's disease (EOAD) and frontotemporal dementia (FTD). Discovery analysis was conducted on 435 cases and 671 controls of European ancestry. Burden testing for rare variation associated with disease was conducted using filters based on variant rarity (less than one in 10,000 or private), computational prediction of deleteriousness (CADD) (10 or 15 thresholds), and molecular function (protein loss-of-function [LoF] only, coding alteration only, or coding plus non-coding variants in experimentally predicted regulatory regions). Replication analysis was conducted on 16,434 independent cases and 15,587 independent controls. Rare variants in TET2 were enriched in the discovery combined EOAD and FTD cohort (p = 4.6 × 10-8, genome-wide corrected p = 0.0026). Most of these variants were canonical LoF or non-coding in predicted regulatory regions. This enrichment replicated across several cohorts of Alzheimer's disease (AD) and FTD (replication only p = 0.0029). The combined analysis odds ratio was 2.3 (95% confidence interval [CI] 1.6-3.4) for AD and FTD. The odds ratio for qualifying non-coding variants considered independently from coding variants was 3.7 (95% CI 1.7-9.4). For LoF variants, the combined odds ratio (for AD, FTD, and amyotrophic lateral sclerosis, which shares clinicopathological overlap with FTD) was 3.1 (95% CI 1.9-5.2). TET2 catalyzes DNA demethylation. Given well-defined changes in DNA methylation that occur during aging, rare variation in TET2 may confer risk for neurodegeneration by altering the homeostasis of key aging-related processes. Additionally, our study emphasizes the relevance of non-coding variation in genetic studies of complex disease.


Assuntos
Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Mutação com Perda de Função/genética , Doenças Neurodegenerativas/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Animais , Cognição , Dioxigenases , Feminino , Demência Frontotemporal/genética , Humanos , Masculino , Camundongos
19.
Genome Res ; 29(5): 809-818, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30940688

RESUMO

Large-scale sequencing efforts in amyotrophic lateral sclerosis (ALS) have implicated novel genes using gene-based collapsing methods. However, pathogenic mutations may be concentrated in specific genic regions. To address this, we developed two collapsing strategies: One focuses rare variation collapsing on homology-based protein domains as the unit for collapsing, and the other is a gene-level approach that, unlike standard methods, leverages existing evidence of purifying selection against missense variation on said domains. The application of these two collapsing methods to 3093 ALS cases and 8186 controls of European ancestry, and also 3239 cases and 11,808 controls of diversified populations, pinpoints risk regions of ALS genes, including SOD1, NEK1, TARDBP, and FUS While not clearly implicating novel ALS genes, the new analyses not only pinpoint risk regions in known genes but also highlight candidate genes as well.


Assuntos
Esclerose Lateral Amiotrófica/genética , Análise Mutacional de DNA/métodos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Feminino , Variação Genética , Humanos , Masculino , Mutação , Quinase 1 Relacionada a NIMA/genética , Domínios Proteicos/genética , Proteína FUS de Ligação a RNA/genética , Fatores de Risco , Superóxido Dismutase-1/genética , População Branca/genética , Sequenciamento do Exoma/métodos
20.
Mol Diagn Ther ; 22(4): 431-442, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777398

RESUMO

Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and histological subtypes with different clinical characteristics. While survival rates are high if RCC is diagnosed when still confined to the kidney and treated definitively, there are no specific diagnostic screening tests available and symptoms are rare in early stages of the disease. Management of advanced RCC has changed significantly with the advent of targeted therapies, yet survival is usually increased by months due to acquired resistance to these therapies. DNA methylation, the covalent addition of a methyl group to a cytosine, is essential for normal development and transcriptional regulation, but becomes altered commonly in cancer. These alterations result in broad transcriptional changes, including in tumor suppressor genes. Because DNA methylation is one of the earliest molecular changes in cancer and is both widespread and stable, its role in cancer biology, including RCC, has been extensively studied. In this review, we examine the role of DNA methylation in RCC disease etiology and progression, the preclinical use of DNA methylation alterations as diagnostic, prognostic and predictive biomarkers, and the potential for DNA methylation-directed therapies.


Assuntos
Carcinoma de Células Renais/genética , Metilação de DNA , Neoplasias Renais/genética , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA