Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phytochemistry ; 214: 113818, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37558193

RESUMO

Six previously undescribed intact limonoids together with four known compounds were isolated from the seeds of Trichilia lepidota subsp. schumanniana (Harms) T.D.Penn. Their structures were characterized based on one- and two-dimensional nuclear magnetic resonance spectra, infrared, ultraviolet, mass spectroscopy results, and optical rotation. All compounds were evaluated for their ability to inhibit nitric oxide production in cultures of RAW 264.7 macrophages stimulated by lipopolysaccharide, cytotoxicity and growth of Mycobacterium tuberculosis strains H37Rv and M299. The compounds 7-deacetyl-11ß,12α-diacetoxy-14,15-epoxyazadirone (5) and walsurin E (9) were the most potent in inhibiting nitric oxide production, although the compounds 1-deshydroxy-12α-acetoxymunronin N (1) and 6α,12α-dihydroxyazadirone (6) also showed controlled potential of this mediator, in addition to being potent growth inhibitors of Mycobacterium tuberculosis H37RV and M299, without cytotoxicity interference. Ring intact limonoids isolated from Trichilia lepidota subsp. schumanniana seeds are a new source of bioactive substances that may be used in the future against diseases such as tuberculosis and other processes related to inflammation.


Assuntos
Limoninas , Meliaceae , Limoninas/química , Óxido Nítrico , Meliaceae/química , Espectroscopia de Ressonância Magnética , Macrófagos
2.
An Acad Bras Cienc ; 94(3): e20211032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228304

RESUMO

Tuberculosis remains a major health problem worldwide. Drug-resistant and hypervirulent Mycobacterium tuberculosis (Mtb) strains can lead to a hyperinflammatory response and necrotic pathology in hyper-reactive individuals that require adjunctive treatment. Plant-derived substances have been investigated for TB treatment, among which flavonoids stand out. We evaluate the anti-Mtb, anti-inflammatory and cytotoxicity activities of fractions and substances 1, 2 and 3 isolated from Erythrina verna through a bioassay guided fractionation. Seven fractions (1, 3-5 and 7-9) obtained from dichloromethane E. verna extract inhibited NO production (IC50 ≤ 15 µg/mL) with none or poor cytotoxic effect, while the fractions 4 and 5 notably reduced TNF-a production. Fractions 4, 6 and 9 suppressed Mycobacterium growth with MIC50 ≤ 20 µg/mL. Fraction 4 was the most potent due to dual biological activities. Erythratidinone and alpinumisoflavone inhibited the growth of Mtb H37Rv and hypervirulent strain in bacterial cultures (MIC50 ≤ 20 µg/mL), with erythratidinone standing out in reducing intracellular growth of Mtb H37Rv (5.8 ± 1.1 µg/mL). Alpinumisoflavone and erythratidinone were capable of inhibiting NO and TNF-α production besides showing significant inhibitory effects against Mycobacterium tuberculosis strains with low toxicity in macrophages. Both substances are promising for further studies focusing on an anti-TB dual treatment approach.


Assuntos
Erythrina , Mycobacterium tuberculosis , Anti-Inflamatórios/farmacologia , Antituberculosos/farmacologia , Flavonoides/farmacologia , Humanos , Cloreto de Metileno , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa
3.
Biochim Biophys Acta Gen Subj ; 1866(11): 130218, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35905923

RESUMO

BACKGROUND: Antimicrobial peptides, natural or synthetic, appear as promising molecules for antimicrobial therapy because of their both broad antimicrobial activity and mechanism of action. Herein, we determine the anti-Candida and antimycobacterial activities, mechanism of action on yeasts, and cytotoxicity on mammalian cells in the presence of the bioinspired peptide CaDef2.1G27-K44. METHODS: CaDef2.1G27-K44 was designed to attain the following criteria: high positive net charge; low molecular weight (<3000 Da); Boman index ≤2.5; and total hydrophobic ratio ≥ 40%. The mechanism of action was studied by growth inhibition, plasma membrane permeabilization, ROS induction, mitochondrial functionality, and metacaspase activity assays. The cytotoxicity on macrophages, monocytes, and erythrocytes were also determined. RESULTS: CaDef2.1G27-K44 showed inhibitory activity against Candida spp. with MIC100 values ranging from 25 to 50 µM and the standard and clinical isolate of Mycobacterium tuberculosis with MIC50 of 33.2 and 55.4 µM, respectively. We demonstrate that CaDef2.1G27-K44 is active against yeasts at different salt concentrations, induced morphological alterations, caused membrane permeabilization, increased ROS, causes loss of mitochondrial functionality, and activation of metacaspases. CaDef2.1G27-K44 has low cytotoxicity against mammalian cells. CONCLUSIONS: The results obtained showed that CaDef2.1G27-K44 has great antimicrobial activity against Candida spp. and M. tuberculosis with low toxicity to host cells. For Candida spp., the treatment with CaDef2.1G27-K44 induces a process of regulated cell death with apoptosis-like features. GENERAL SIGNIFICANCE: We show a new AMP bioinspired with physicochemical characteristics important for selectivity and antimicrobial activity, which is a promising candidate for drug development, mainly to control Candida infections.


Assuntos
Anti-Infecciosos , Frutas , Animais , Antibacterianos , Candida , Defensinas , Mamíferos , Peptídeos , Espécies Reativas de Oxigênio
4.
Amino Acids ; 53(2): 219-237, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33483849

RESUMO

Microbial resistance to available drugs is a growing health threat imposing the need for the development of new drugs. The scaffold of plant defensins, including their γ-cores, are particularly good candidates for drug design. This work aimed to improve the antifungal activity of a previous design peptide, named A36,42,44γ32-46VuDef (for short DD) against yeasts by altering its biochemical parameters. We explore the correlation of the biological activity and structure of plant defensins and compared their primary structures by superimposition with VuDef1 and DD which indicated us the favorable position and the amino acid to be changed. Three new peptides with modifications in charge, hydrophobicity (RR and WR) and chirality (D-RR) were designed and tested against pathogenic yeasts. Inhibition was determined by absorbance. Viability of mammalian cells was determined by MTT. The three designed peptides had better inhibitory activity against the yeasts with better potency and spectrum of yeast species inhibition, with low toxicity to mammalian cells. WR, the most hydrophobic and cationic, exhibited better antifungal activity and lower toxicity. Our study provides experimental evidence that targeted changes in the primary structure of peptides based on plant defensins γ-core primary structures prove to be a good tool for the synthesis of new compounds that may be useful as alternative antifungal drugs. The method described did not have the drawback of synthesis of several peptides, because alterations are guided. When compared to other methods, the design process described is efficient and viable to those with scarce resources.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Linhagem Celular , Defensinas/química , Defensinas/farmacologia , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimento
5.
Molecules ; 24(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875889

RESUMO

A phytochemical study of leaves and twigs of Psychotria nuda resulted in 19 compounds, including five indole alkaloids, N,N,N-trimethyltryptamine, lyaloside, strictosamide, strictosidine, and 5α-carboxystrictosidine; two flavonolignans, cinchonain Ia and cinchonain Ib; an iridoid, roseoside; a sugar, lawsofructose; a coumarin, scopoletin; a diterpene, phytol; three triterpenes, pomolic acid, spinosic acid, and rotungenic acid; and five steroids, sitosterol, stigmasterol, campesterol, ß-sitosterol-3-O-ß-d-glucoside, and ß-stigmasterol-3-O-ß-d-glucoside. Some compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis and their ability to inhibit NO production by macrophages stimulated by lipopolysaccharide (LPS). The compounds pomolic acid, spinosic acid, strictosidine, and 5α-carboxystrictosidine displayed antimycobacterial activity with minimum inhibitory concentrations ranging from 7.1 to 19.2 µg/mL. These compounds showed promising inhibitory activity against NO production (IC50 3.22 to 25.5 µg/mL). 5α-carboxystrictosidine did not show cytotoxicity against macrophages RAW264.7 up to a concentration of 100 µg/mL. With the exception of strictosamide, this is the first report of the occurrence of these substances in P. nuda.


Assuntos
Alcaloides/análise , Antibacterianos/análise , Antioxidantes/análise , Psychotria/química , Triterpenos/análise , Alcaloides/farmacologia , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Lipopolissacarídeos/efeitos adversos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Células RAW 264.7 , Triterpenos/farmacologia
6.
Rev. bras. farmacogn ; 29(1): 40-45, Jan.-Feb. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-990765

RESUMO

Abstract The chemical study of roots from Azadirachta indica A. Juss., Meliaceae, led to the isolation of two new terpenoids, limonoid morenolide and diterpene 17-hydroxy-sandaracopimar-8,15-dien-11-one, in addition to the four well-known limonoids nimbinene, nimbinal, nimbandiol and salannin, and three diterpenoids nimbidiol, ferruginol, and 6,7-dehydroferruginol. Their structural elucidations were based on one and bidimensional Nuclear Magnetic Resonance and Electrospray ionization mass spectrometry spectra data which was compared to the data found in literature. The anti-inflammatory, cytotoxic and antimycobacterial activities of the identified terpenoids were evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA