Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 33(12): 14354-14369, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31661644

RESUMO

Targeting activated fibroblasts, including myofibroblast differentiation, has emerged as a key therapeutic strategy in patients with idiopathic pulmonary fibrosis (IPF). However, there is no available therapy capable of selectively eradicating myofibroblasts or limiting their genesis. Through an integrative analysis of the regulator genes that are responsible for the activation of IPF fibroblasts, we noticed the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding protein, myristoylated alanine-rich C-kinase substrate (MARCKS), as a potential target molecule for IPF. Herein, we have employed a 25-mer novel peptide, MARCKS phosphorylation site domain sequence (MPS), to determine if MARCKS inhibition reduces pulmonary fibrosis through the inactivation of PI3K/protein kinase B (AKT) signaling in fibroblast cells. We first observed that higher levels of MARCKS phosphorylation and the myofibroblast marker α-smooth muscle actin (α-SMA) were notably overexpressed in all tested IPF lung tissues and fibroblast cells. Treatment with the MPS peptide suppressed levels of MARCKS phosphorylation in primary IPF fibroblasts. A kinetic assay confirmed that this peptide binds to phospholipids, particularly PIP2, with a dissociation constant of 17.64 nM. As expected, a decrease of phosphatidylinositol (3,4,5)-trisphosphate pools and AKT activity occurred in MPS-treated IPF fibroblast cells. MPS peptide was demonstrated to impair cell proliferation, invasion, and migration in multiple IPF fibroblast cells in vitro as well as to reduce pulmonary fibrosis in bleomycin-treated mice in vivo. Surprisingly, we found that MPS peptide decreases α-SMA expression and synergistically interacts with nintedanib treatment in IPF fibroblasts. Our data suggest MARCKS as a druggable target in pulmonary fibrosis and also provide a promising antifibrotic agent that may lead to effective IPF treatments.-Yang, D. C., Li, J.-M., Xu, J., Oldham, J., Phan, S. H., Last, J. A., Wu, R., Chen, C.-H. Tackling MARCKS-PIP3 circuit attenuates fibroblast activation and fibrosis progression.


Assuntos
Fibroblastos/metabolismo , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Fosfatidilinositóis/metabolismo , Fibrose Pulmonar/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Proliferação de Células , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Substrato Quinase C Rico em Alanina Miristoilada/genética , Fosfatidilinositóis/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/induzido quimicamente
2.
J Immunol ; 200(11): 3840-3856, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29703864

RESUMO

Ras, a small GTPase protein, is thought to mediate Th2-dependent eosinophilic inflammation in asthma. Ras requires cell membrane association for its biological activity, and this requires the posttranslational modification of Ras with an isoprenyl group by farnesyltransferase (FTase) or geranylgeranyltransferase (GGTase). We hypothesized that inhibition of FTase using FTase inhibitor (FTI)-277 would attenuate allergic asthma by depleting membrane-associated Ras. We used the OVA mouse model of allergic inflammation and human airway epithelial (HBE1) cells to determine the role of FTase in inflammatory cell recruitment. BALB/c mice were first sensitized then exposed to 1% OVA aerosol or filtered air, and half were injected daily with FTI-277 (20 mg/kg per day). Treatment of mice with FTI-277 had no significant effect on lung membrane-anchored Ras, Ras protein levels, or Ras GTPase activity. In OVA-exposed mice, FTI-277 treatment increased eosinophilic inflammation, goblet cell hyperplasia, and airway hyperreactivity. Human bronchial epithelial (HBE1) cells were pretreated with 5, 10, or 20 µM FTI-277 prior to and during 12 h IL-13 (20 ng/ml) stimulation. In HBE1 cells, FTase inhibition with FTI-277 had no significant effect on IL-13-induced STAT6 phosphorylation, eotaxin-3 peptide secretion, or Ras translocation. However, addition of exogenous FPP unexpectedly augmented IL-13-induced STAT6 phosphorylation and eotaxin-3 secretion from HBE1 cells without affecting Ras translocation. Pharmacological inhibition of FTase exacerbates allergic asthma, suggesting a protective role for FTase or possibly Ras farnesylation. FPP synergistically augments epithelial eotaxin-3 secretion, indicating a novel Ras-independent farnesylation mechanism or direct FPP effect that promotes epithelial eotaxin-3 production in allergic asthma.


Assuntos
Asma/tratamento farmacológico , Hiper-Reatividade Brônquica/tratamento farmacológico , Eosinófilos/efeitos dos fármacos , Farnesiltranstransferase/antagonistas & inibidores , Inflamação/tratamento farmacológico , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Proteínas ras/metabolismo , Animais , Asma/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Eosinófilos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Farnesiltranstransferase/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Metionina/análogos & derivados , Metionina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/farmacologia , Transdução de Sinais/efeitos dos fármacos
3.
Physiol Rep ; 3(5)2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25969462

RESUMO

Systemic treatment with statins mitigates allergic airway inflammation, TH2 cytokine production, epithelial mucus production, and airway hyperreactivity (AHR) in murine models of asthma. We hypothesized that pravastatin delivered intratracheally would be quantifiable in lung tissues using mass spectrometry, achieve high drug concentrations in the lung with minimal systemic absorption, and mitigate airway inflammation and structural changes induced by ovalbumin. Male BALB/c mice were sensitized to ovalbumin (OVA) over 4 weeks, then exposed to 1% OVA aerosol or filtered air (FA) over 2 weeks. Mice received intratracheal instillations of pravastatin before and after each OVA exposure (30 mg/kg). Ultra performance liquid chromatography - mass spectrometry was used to quantify plasma, lung, and bronchoalveolar lavage fluid (BALF) pravastatin concentration. Pravastatin was quantifiable in mouse plasma, lung tissue, and BALF (BALF > lung > plasma for OVA and FA groups). At these concentrations pravastatin inhibited airway goblet cell hyperplasia/metaplasia, and reduced BALF levels of cytokines TNFα and KC, but did not reduce BALF total leukocyte or eosinophil cell counts. While pravastatin did not mitigate AHR, it did inhibit airway hypersensitivity (AHS). In this proof-of-principle study, using novel mass spectrometry methods we show that pravastatin is quantifiable in tissues, achieves high levels in mouse lungs with minimal systemic absorption, and mitigates some pathological features of allergic asthma. Inhaled pravastatin may be beneficial for the treatment of asthma by having direct airway effects independent of a potent anti-inflammatory effect. Statins with greater lipophilicity may achieve better anti-inflammatory effects warranting further research.

4.
PLoS Negl Trop Dis ; 7(1): e1967, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326610

RESUMO

Cystic echinococcosis is still a major concern in South America. While some regions show advances in the control of the disease, others have among the highest incidence in the world. To reverse this situation the Pan American Health Organization (PAHO) has launched a regional project on cystic echinococcosis control and surveillance. An early concern of the program was the lack of a standardized diagnostic tool to monitor infection in dogs, a key target of control programs. Under this premise, we have developed a new copro-ELISA test after extensive screening of a large panel of monoclonal antibodies (MAbs) and polyclonal sera, which performs with high standards of sensitivity (92.6%) and specificity (86.4%) as established by necropsy diagnosis of dogs. The key component of the test, MAbEg9 has a convenient IgG isotype and reacts with a periodate-resistant epitope found in high molecular weight components of the worm. Time-course analysis of experimentally infected dogs showed that even animals with a very low number of parasites could be detected as early as day 20 post infection. The test was formulated in a ready-to-use kit format with proven stability of each component for a minimum of 3 months at room temperature. This characteristic facilitates its standardized use and shipping to other laboratories, which was demonstrated by the identical results obtained by two different laboratories in Peru and our own laboratory when a large number of field samples were analyzed independently in a blind fashion.


Assuntos
Anticorpos Monoclonais , Antígenos de Helmintos/análise , Doenças do Cão/diagnóstico , Equinococose/veterinária , Fezes/parasitologia , Parasitologia/métodos , Medicina Veterinária/métodos , Animais , Doenças do Cão/parasitologia , Cães , Equinococose/diagnóstico , Equinococose/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Fezes/química , Feminino , Masculino , Organização Pan-Americana da Saúde , Peru , Kit de Reagentes para Diagnóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-20953358

RESUMO

OBJECTIVES AND DESIGN: The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. MATERIALS OR SUBJECTS: Mice from a C57BL/6 wild-type, NOS1(-/-), NOS2(-/-), and NOS3(-/-) genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. METHODS: We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. RESULTS: Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3(-/-) strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1(-/-) animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2(-/-), and NOS3(-/-) allergen-exposed mice. CONCLUSION: The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This "homeostatic" mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.


Assuntos
Regulação Enzimológica da Expressão Gênica , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo I/genética , Ovalbumina/química , Animais , Deleção de Genes , Células Caliciformes/citologia , Inflamação , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Isoformas de Proteínas
6.
Inhal Toxicol ; 22(7): 561-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20388000

RESUMO

The authors have previously demonstrated that wildfire-derived coarse or fine particulate matter (PM) intratracheally instilled into lungs of mice induce a strong inflammatory response. In the current study, the authors demonstrate that wildfire PM simultaneously cause major increases in oxidative stress in the mouse lungs as measured by decreased antioxidant content of the lung lavage supernatant fluid 6 and 24 h after PM administration. Concentrations of neutrophil chemokines/cytokines and of tumor necrosis factor (TNF)-alpha were elevated in the lung lavage fluid obtained 6 and 24 h after PM instillation, consistent with the strong neutrophilic inflammatory response observed in the lungs 24 h after PM administration, suggesting a relationship between the proinflammatory activity of the PM and the measured level of antioxidant capacity in the lung lavage fluid. Chemical analysis shows relatively low levels of polycyclic aromatic hydrocarbons compared to published results from typical urban PM. Coarse PM fraction is more active (proinflammatory activity and oxidative stress) on an equal-dose basis than the fine PM despite its lower content of polycyclic aromatic hydrocarbons. There does not seem to be any correlation between the content of any specific polycyclic aromatic hydrocarbon (or of total polycyclic aromatic hydrocarbon content) in the PM fraction and its toxicity. However, the concentrations of the oxidation products of phenanthrene and anthracene, phenanthraquinone and anthraquinone, were several-fold higher in the coarse PM than the fine fraction, suggesting a significant role for atmospheric photochemistry in the formation of secondary pollutants in the wildfire PM and the possibility that such secondary pollutants could be significant sources of toxicity in the wildfire PM.


Assuntos
Antioxidantes/metabolismo , Citocinas/metabolismo , Incêndios , Pulmão/metabolismo , Tamanho da Partícula , Material Particulado/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Animais , Antioxidantes/análise , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , California , Citocinas/biossíntese , Pulmão/química , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Material Particulado/administração & dosagem , Hidrocarbonetos Policíclicos Aromáticos/administração & dosagem , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Meio Selvagem
7.
Toxicol Appl Pharmacol ; 215(3): 250-9, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16643973

RESUMO

Mice lacking inducible nitric oxide synthase (NOS2-/-) are more susceptible to ozone-induced lung inflammation and injury than their isogenic wild-type (NOS2+/+) counterparts, demonstrating an apparent protective effect for NOS2 in murine lungs. We hypothesized that nitric oxide (NO) generated from either NOS2 in the airway epithelial cells or the bone-marrow-derived inflammatory cells was responsible for the protective effect of NOS2. To test this hypothesis, we prepared chimeric mice by killing their endogenous bone marrow cells by whole body irradiation followed by bone marrow transplantation from a heterologous donor mouse. We exposed C57BL/6 (NOS2+/+), NOS2-/-, and chimeric NOS2 mice (NOS2-/+, NOS2+/-) to 1 ppm of ozone for 3 consecutive nights. NOS2-/- mice were more severely injured after exposure to ozone than C57BL/6 mice, including a more robust inflammatory cell influx (4.14 x 10(5) +/- 2.19 x 10(5) vs. 2.78 x 10(5) +/- 1.36 x 10(5) cells respectively; P = 0.036) and greater oxidation of total protein sulfhydryls (R-SH) in their blood plasma. Chimeric NOS2-/+ mice, which had bone marrow from NOS2-/- mice transplanted into C57BL/6 recipients, had a significantly greater response to ozone (increased numbers of neutrophils in lung lavage and decreased concentrations of exhaled NO) as compared to the reciprocal chimeric strain (NOS2+/-). We conclude that NOS2 has a protective effect against acute lung injury caused by ozone inhalation, which may be mediated, in part, by NO generated by NOS2 from inflammatory cells, predominantly neutrophils, recruited into the lung.


Assuntos
Pulmão/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ozônio/toxicidade , Pneumonia/metabolismo , Animais , Transplante de Medula Óssea , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Quimera , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Pulmão/metabolismo , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Pneumonia/induzido quimicamente , Compostos de Sulfidrila/sangue
8.
Toxicol Appl Pharmacol ; 208(2): 117-26, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16183385

RESUMO

Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-kappaB in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.


Assuntos
Caquexia/induzido quimicamente , Caquexia/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fígado/enzimologia , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Xenobióticos/metabolismo , Animais , Western Blotting , Líquido da Lavagem Broncoalveolar , Sistema Enzimático do Citocromo P-450/biossíntese , Regulação para Baixo/efeitos dos fármacos , Feminino , Técnicas In Vitro , Exposição por Inalação , Fígado/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Oxidantes Fotoquímicos/administração & dosagem , Ozônio/administração & dosagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Environ Sci Technol ; 39(11): 3896-903, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15984762

RESUMO

The traditional instrumental technology for pesticide residue analysis is too expensive and labor-intense to meet the regional needs concerning environmental monitoring. ELISA methodology was used for a pilot scale study of groundwater quality in an agricultural region a few kilometers southwest of Montevideo, the capital city of Uruguay. The study spanned 2 years and examined concentrations (detection limits are given in [ppb]) of two triazine herbicides (simazine [0.3] and atrazine [0.4]) and the carbamate insecticide carbaryl [10] and its major metabolite 1-naphthol [17]. In general, pesticide concentrations were below detection limits in the samples tested and in all cases were well below the maximum contaminant levels set by the U.S. EPA. 1-Naphthol was detected frequently by ELISA, but the assay may have tended to systematically overestimate this analyte. To our knowledge, this is the first study of its type in Uruguay and perhaps the first systematic approach to monitoring for organic pesticides in groundwater water sources in the temperate region of South America.


Assuntos
Praguicidas/análise , Verduras/química , Poluentes Químicos da Água/análise , Abastecimento de Água , Agricultura , Atrazina/análise , Carbaril/análise , Cidades , Monitoramento Ambiental/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Herbicidas/análise , Naftóis/análise , Estações do Ano , Uruguai , Poluentes Químicos da Água/toxicidade
10.
Cancer Epidemiol Biomarkers Prev ; 13(7): 1223-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15247134

RESUMO

The alkaline single-cell gel electrophoresis (SCGE) assay, also called the comet assay, is a rapid and simple method for the detection of DNA damage in individual cells. The objective of this study was to establish if the alkaline SCGE assay in whole blood cells gives similar results as the same method in isolated lymphocytes, because whole blood cells are simpler and more economical to use, specifically in human genotoxic biomonitoring. To validate the method, we first used mouse blood cells, because mouse is one of the most commonly used animals in genetic toxicology testing. Groups of seven CF1 male mice were given i.p. injections of relatively low doses of methyl methanesulfonate (25 mg/kg body weight), a direct acting genotoxic agent, or cyclophosphamide (50 mg/kg body weight), which requires metabolic activation. Three, 6, 8, 12, 16, 20, and 65 hours after treatment, 5 microL of blood were collected from each animal and were processed for the alkaline SCGE assay. On the basis of an analysis of tail moment, the results showed that this assay can detect DNA damage induced by both kinds of alkylating mutagens. We then did a preliminary study to assess the status of DNA damage in a young (19 to 23 years old) healthy population of male smokers (n = 6) and nonsmokers (n = 6) using the comet assay in whole blood cells. A significant difference was observed between the two groups, showing that the method is able to detect DNA damage in the smoking group despite the short time that the volunteers had actually been smoking.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Ensaio Cometa/métodos , Dano ao DNA , Fumar/efeitos adversos , Fumar/sangue , Adulto , Animais , Células Sanguíneas/patologia , Ciclofosfamida/administração & dosagem , Ciclofosfamida/toxicidade , Humanos , Masculino , Metanossulfonato de Metila/administração & dosagem , Metanossulfonato de Metila/toxicidade , Camundongos , Testes de Mutagenicidade , Inquéritos e Questionários
11.
Biochem Biophys Res Commun ; 305(3): 719-28, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12763052

RESUMO

We have analyzed changes in approximately 4000 lung mRNAs, with GeneChips, in mice exposed to 1 ppm O(3) for three consecutive nights (8 h per night). Differential gene expression analysis identified approximately 260 O(3) sensitive genes; approximately 80% of these were repressed and approximately 20% were induced in O(3)-exposed mice compared to the air-exposed controls. A 20-fold induction of serum amyloid A3 mRNA by O(3) suggested activation of NF-kappaB and CCAAT/enhancer binding protein-mediated pathways by inflammatory cytokines. Induction (up to 14-fold) of 12 genes that increase DNA synthesis and cell cycle progression, and increase (approximately 7-fold) in CD44 mRNA and macrophage metalloelastase suggested a state of O(3)-induced hyperplasia and lung remodeling. Several mRNAs encoding enzymes of xenobiotic metabolism and cytoskeletal functions were repressed and may suggest cytokine mediated suppression of cytochrome P450 expression and cachexia-like inflammatory state in ozone-exposed lungs. The expressions of approximately 30 genes of immune response were also repressed. Collectively this genome-wide analysis of lungs identified ozone-induced disruption of gene transcriptional profile indicative of increased cellular proliferation under suppressed immune surveillance and xenobiotic metabolism.


Assuntos
Pulmão/metabolismo , Oxidantes Fotoquímicos/farmacologia , Ozônio/farmacologia , RNA Mensageiro/metabolismo , Ar , Animais , Ciclo Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Perfilação da Expressão Gênica , Genoma , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA