Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Oncol ; 42(12): 1439-1449, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408285

RESUMO

PURPOSE: Imatinib resistance in GI stromal tumors (GISTs) is primarily caused by secondary KIT mutations, and clonal heterogeneity of these secondary mutations represents a major treatment obstacle. KIT inhibitors used after imatinib have clinical activity, albeit with limited benefit. Ripretinib is a potent inhibitor of secondary KIT mutations in the activation loop (AL). However, clinical benefit in fourth line remains limited and the molecular mechanisms of ripretinib resistance are largely unknown. PATIENTS AND METHODS: Progressing lesions of 25 patients with GISTs refractory to ripretinib were sequenced for KIT resistance mutations. Resistant genotypes were validated and characterized using novel cell line models and in silico modeling. RESULTS: GISTs progressing on ripretinib were enriched for secondary mutations in the ATP-binding pocket (AP), which frequently occur in cis with preexisting AL mutations, resulting in highly resistant AP/AL genotypes. AP/AL mutations were rarely observed in a cohort of progressing GIST samples from the preripretinib era but represented 50% of secondary KIT mutations in patients with tumors resistant to ripretinib. In GIST cell lines harboring secondary KIT AL mutations, the sole genomic escape mechanisms during ripretinib drug selection were AP/AL mutations. Ripretinib and sunitinib synergize against mixed clones with secondary AP or AL mutants but do not suppress clones with AP/AL genotypes. CONCLUSION: Our findings underscore that KIT remains the central oncogenic driver even in late lines of GIST therapy. KIT-inhibitor combinations may suppress resistance because of secondary KIT mutations. However, the emergence of KIT AP/AL mutations after ripretinib treatment calls for new strategies in the development of next-generation KIT inhibitors.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Naftiridinas , Proteínas Proto-Oncogênicas c-kit , Ureia , Humanos , Trifosfato de Adenosina/metabolismo , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Mesilato de Imatinib/uso terapêutico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/genética , Ureia/análogos & derivados
2.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35486541

RESUMO

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutagênese Insercional , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Cancer Discov ; 11(1): 108-125, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32972961

RESUMO

Gastrointestinal stromal tumors (GIST) harboring activating mutations of PDGFRA respond to imatinib, with the notable exception of the most common mutation, D842V. Avapritinib is a novel, potent KIT/PDGFRA inhibitor with substantial clinical activity in patients with the D842V genotype. To date, only a minority of PDGFRA-mutant patients treated with avapritinib have developed secondary resistance. Tumor and plasma biopsies in 6 of 7 patients with PDGFRA primary mutations who progressed on avapritinib or imatinib had secondary resistance mutations within PDGFRA exons 13, 14, and 15 that interfere with avapritinib binding. Secondary PDGFRA mutations causing V658A, N659K, Y676C, and G680R substitutions were found in 2 or more patients each, representing recurrent mechanisms of PDGFRA GIST drug resistance. Notably, most PDGFRA-mutant GISTs refractory to avapritinib remain dependent on the PDGFRA oncogenic signal. Inhibitors that target PDGFRA protein stability or inhibition of PDGFRA-dependent signaling pathways may overcome avapritinib resistance. SIGNIFICANCE: Here, we provide the first description of avapritinib resistance mechanisms in PDGFRA-mutant GIST.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Tumores do Estroma Gastrointestinal , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Humanos , Mutação , Pirazóis , Pirróis , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Triazinas
4.
ACS Med Chem Lett ; 11(12): 2484-2490, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33335671

RESUMO

Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) and currently the gold-standard for the treatment of patients suffering from non-small cell lung cancer (NSCLC) harboring T790M-mutated epidermal growth factor receptor (EGFR). The outcome of the treatment, however, is limited by the emergence of the C797S resistance mutation. Allosteric inhibitors have a different mode of action and were developed to overcome this limitation. However, most of these innovative molecules are not effective as a single agent. Recently, mutated EGFR was successfully addressed with osimertinib combined with the allosteric inhibitor JBJ-04-125-02, but surprisingly, structural insights into their binding mode were lacking. Here, we present the first complex crystal structures of mutant EGFR in complex with third-generation inhibitors such as osimertinib and mavelertinib in the presence of simultaneously bound allosteric inhibitors. These structures highlight the possibility of further combinations targeting EGFR and lay the foundation for hybrid inhibitors as next-generation TKIs.

5.
J Med Chem ; 63(20): 11725-11755, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32931277

RESUMO

Mutated or amplified Her2 serves as a driver of non-small cell lung cancer or mediates resistance toward the inhibition of its family member epidermal growth factor receptor with small-molecule inhibitors. To date, small-molecule inhibitors targeting Her2 which can be used in clinical routine are lacking, and therefore, the development of novel inhibitors was undertaken. In this study, the well-established pyrrolopyrimidine scaffold was modified with structural motifs identified from a screening campaign with more than 1600 compounds, which were applied against wild-type Her2 and its mutant variant Her2-A775_G776insYVMA. The resulting inhibitors were designed to covalently target a reactive cysteine in the binding site of Her2 and were further optimized by means of structure-based drug design utilizing a set of obtained complex crystal structures. In addition, the analysis of binding kinetics and absorption, distribution, metabolism, and excretion parameters as well as mass spectrometry experiments and western blot analysis substantiated our approach.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Receptor ErbB-2/genética , Receptor ErbB-2/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
J Med Chem ; 63(1): 40-51, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31414802

RESUMO

The ErbB receptor tyrosine kinase family members EGFR (epidermal growth factor receptor) and Her2 are among the prominent mutated oncogenic drivers of non-small cell lung cancer (NSCLC). Their importance in proliferation, apoptosis, and cell death ultimately renders them hot targets in cancer therapy. Small-molecule tyrosine kinase inhibitors seem well suited to be tailor-made therapeutics for EGFR mutant NSCLC; however, drug resistance mutations limit their success. Against this background, the elucidation and visualization of the three-dimensional structure of cancer-related kinases provide valuable insights into their molecular functions. This field has undergone a revolution because X-ray crystal structure determinations aided structure-based drug design approaches and clarified the effect of activating and resistance-conferring mutations. Here, we present an overview of important mutations affecting EGFR and Her2 and highlight their influence on the kinase domain conformations and active site accessibility.


Assuntos
Receptores ErbB/química , Receptor ErbB-2/química , Carcinoma Pulmonar de Células não Pequenas/genética , Domínio Catalítico/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação Puntual , Conformação Proteica em alfa-Hélice/genética , Domínios Proteicos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
7.
Chem Sci ; 10(46): 10789-10801, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31857889

RESUMO

Precision medicine has revolutionized the treatment of patients in EGFR driven non-small cell lung cancer (NSCLC). Targeted drugs show high response rates in genetically defined subsets of cancer patients and markedly increase their progression-free survival as compared to conventional chemotherapy. However, recurrent acquired drug resistance limits the success of targeted drugs in long-term treatment and requires the constant development of novel efficient inhibitors of drug resistant cancer subtypes. Herein, we present covalent inhibitors of the drug resistant gatekeeper mutant EGFR-L858R/T790M based on the pyrrolopyrimidine scaffold. Biochemical and cellular characterization, as well as kinase selectivity profiling and western blot analysis, substantiate our approach. Moreover, the developed compounds possess high activity against multi drug resistant EGFR-L858R/T790M/C797S in biochemical assays due to their highly reversible binding character, that was revealed by characterization of the binding kinetics. In addition, we present the first X-ray crystal structures of covalent inhibitors in complex with C797S-mutated EGFR which provide detailed insight into their binding mode.

8.
J Med Chem ; 62(5): 2843-2848, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30768270

RESUMO

The protein kinase MKK7 is linked to neuronal development and the onset of cancer. The field, however, lacks high-quality functional probes that would allow for the dissection of its detailed functions. Against this background, we describe an effective covalent inhibitor of MKK7 based on the pyrazolopyrimidine scaffold.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , MAP Quinase Quinase 7/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia
9.
Sci Rep ; 9(1): 14, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626888

RESUMO

Clinical data acquired over the last decade on non-small cell lung cancer (NSCLC) treatment with small molecular weight Epidermal Growth Factor Receptor (EGFR) inhibitors have shown significant influence of EGFR point mutations and in-frame deletions on clinical efficacy. Identification of small molecules capable of inhibiting the clinically relevant EGFR mutant forms is desirable, and novel chemical scaffolds might provide knowledge regarding selectivity among EGFR forms and shed light on new strategies to overcome current clinical limitations. Design, synthesis, docking studies and in vitro evaluation of N-(3-(3-phenylureido)quinoxalin-6-yl) acrylamide derivatives (7a-m) against EGFR mutant forms are described. Compounds 7h and 7l were biochemically active in the nanomolar range against EGFRwt and EGFRL858R. Molecular docking and reaction enthalpy calculations have shown the influence of the combination of reversible and covalent binding modes with EGFR on the inhibitory activity. The inhibitory profile of 7h against a panel of patient-derived tumor cell lines was established, demonstrating selective growth inhibition of EGFR related cells at 10 µM among a panel of 30 cell lines derived from colon, melanoma, breast, bladder, kidney, prostate, pancreas and ovary tumors.


Assuntos
Acrilamidas , Antineoplásicos , Inibidores de Proteínas Quinases , Acrilamidas/síntese química , Acrilamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular/métodos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia
10.
Nat Commun ; 9(1): 4655, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405134

RESUMO

The emergence of acquired resistance against targeted drugs remains a major clinical challenge in lung adenocarcinoma patients. In a subgroup of these patients we identified an association between selection of EGFRT790M-negative but EGFRG724S-positive subclones and osimertinib resistance. We demonstrate that EGFRG724S limits the activity of third-generation EGFR inhibitors both in vitro and in vivo. Structural analyses and computational modeling indicate that EGFRG724S mutations may induce a conformation of the glycine-rich loop, which is incompatible with the binding of third-generation TKIs. Systematic inhibitor screening and in-depth kinetic profiling validate these findings and show that second-generation EGFR inhibitors retain kinase affinity and overcome EGFRG724S-mediated resistance. In the case of afatinib this profile translates into a robust reduction of colony formation and tumor growth of EGFRG724S-driven cells. Our data provide a mechanistic basis for the osimertinib-induced selection of EGFRG724S-mutant clones and a rationale to treat these patients with clinically approved second-generation EGFR inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas , Compostos de Anilina , Animais , Linhagem Celular Tumoral , Progressão da Doença , Receptores ErbB/química , Receptores ErbB/metabolismo , Feminino , Humanos , Cinética , Camundongos , Camundongos Nus , Mutação/genética , Células NIH 3T3 , Piperazinas/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/química
11.
ACS Med Chem Lett ; 9(8): 779-782, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30128066

RESUMO

The first evidence of osimertinib resistance mediated by the epidermal growth factor receptor (EGFR) mutation C797S was reported three years ago. Since then, no major breakthroughs have been achieved to target the clinically relevant mutant variant that impedes covalent bond formation with irreversible EGFR inhibitors. Although several biochemically active compounds have been described, only a few inhibitors that potently act on the cellular level or in vivo have been introduced so far. Herein, we give an overview of current approaches in the field and highlight the challenges that need to be addressed in future research projects to overcome the C797S-mediated drug resistance.

12.
ChemMedChem ; 13(19): 2065-2072, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30079978

RESUMO

The identification of compounds for dissecting biological functions and the development of novel drug molecules are central tasks that often require screening campaigns. However, the required architecture is cost- and time-intensive. Herein we describe the devices and technologies that comprise a Robotics-Assisted Screening Platform for Efficient Ligand Discovery (RASPELD), which we set up in an academic laboratory. RASPELD provides semi-automated high-end screening, and it can be maintained by graduate students. We demonstrate its successful application in biochemical and cellular screens for the identification and validation of bioactive chemical entities as candidate cancer-relevant inhibitors. Specifically, we examined the interaction between a transcription factor, Nrf2, and its key regulator, Keap1. We also examined drug-resistant mutants of the epidermal growth factor receptor (EGFR). Screening campaigns with more than 30 000 compounds were performed in a reasonable period of time. We identified the molecule RSL6586 as a starting point for hit optimization, which is currently ongoing.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Robótica/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Bioensaio , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/instrumentação , Educação de Pós-Graduação , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Robótica/instrumentação
13.
Angew Chem Int Ed Engl ; 57(9): 2307-2313, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29178586

RESUMO

The treatment of non-small cell lung cancer (NSCLC) is currently experiencing a revolution. Over the last decade, the knowledge gained about the biochemical features of biomarkers and their predictive abilities has led to the development of targeted small-molecule inhibitors that present an alternative to harsh chemotherapy. The use of these new therapies has improved the quality of life and increased the survival of patients. The occurrence of inevitable drug resistance requires the constant development of precision medicine. The detailed understanding of the target biology and the search for innovative chemical approaches has encouraged investigations in this field. Herein, we review selected aspects of the molecular targets and present an overview of current topics and challenges in the rational development of small molecules to target NSCLC.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Estrutura Molecular , Medicina de Precisão , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química
14.
J Med Chem ; 60(18): 7725-7744, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28853575

RESUMO

Reversible epidermal growth factor receptor (EGFR) inhibitors prompt a beneficial clinical response in non-small cell lung cancer patients who harbor activating mutations in EGFR. However, resistance mutations, particularly the gatekeeper mutation T790M, limit this efficacy. Here, we describe a structure-guided development of a series of covalent and mutant-selective EGFR inhibitors that effectively target the T790M mutant. The pyrazolopyrimidine-based core differs structurally from that of aminopyrimidine-based third-generation EGFR inhibitors and therefore constitutes a new set of inhibitors that target this mechanism of drug resistance. These inhibitors exhibited strong inhibitory effects toward EGFR kinase activity and excellent inhibition of cell growth in the drug-resistant cell line H1975, without significantly affecting EGFR wild-type cell lines. Additionally, we present the in vitro ADME/DMPK parameters for a subset of the inhibitors as well as in vivo pharmacokinetics in mice for a candidate with promising activity profile.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Mutação Puntual , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia
15.
J Med Chem ; 60(13): 5613-5637, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28603991

RESUMO

Inhibition of the epidermal growth factor receptor represents one of the most promising strategies in the treatment of lung cancer. Acquired resistance compromises the clinical efficacy of EGFR inhibitors during long-term treatment. The recently discovered EGFR-C797S mutation causes resistance against third-generation EGFR inhibitors. Here we present a rational approach based on extending the inhibition profile of a p38 MAP kinase inhibitor toward mutant EGFR inhibition. We used a privileged scaffold with proven cellular potency as well as in vivo efficacy and low toxicity. Guided by molecular modeling, we synthesized and studied the structure-activity relationship of 40 compounds against clinically relevant EGFR mutants. We successfully improved the cellular EGFR inhibition down to the low nanomolar range with covalently binding inhibitors against a gefitinib resistant T790M mutant cell line. We identified additional noncovalent interactions, which allowed us to develop metabolically stable inhibitors with high activities against the osimertinib resistant L858R/T790M/C797S mutant.


Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Imidazóis/química , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Mutação Puntual , Quinazolinas/farmacologia , Relação Estrutura-Atividade
16.
J Med Chem ; 60(6): 2361-2372, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28225269

RESUMO

The specific targeting of oncogenic mutant epidermal growth factor receptor (EGFR) is a breakthrough in targeted cancer therapy and marks a drastic change in the treatment of non-small cell lung cancer (NSCLC). The recurrent emergence of resistance to these targeted drugs requires the development of novel chemical entities that efficiently inhibit drug-resistant EGFR. Herein, we report the optimization process for a hit compound that has emerged from a phenotypic screen resulting in indazole-based compounds. These inhibitors are conformationally less flexible, target gatekeeper mutated drug-resistant EGFR-L858R/T790M, and covalently alkylate Cys797. Western blot analysis, as well as characterization of the binding kinetics and kinase selectivity profiling, substantiates our approach of targeting drug-resistant EGFR-L858R/T790M with inhibitors incorporating the indazole as hinge binder.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Indazóis , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Simulação de Acoplamento Molecular , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia
17.
Angew Chem Int Ed Engl ; 55(36): 10909-12, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27496389

RESUMO

Targeting acquired drug resistance represents the major challenge in the treatment of EGFR-driven non-small-cell lung cancer (NSCLC). Herein, we describe the structure-based design, synthesis, and biological evaluation of a novel class of covalent EGFR inhibitors that exhibit excellent inhibition of EGFR-mutant drug-resistant cells. Protein X-ray crystallography combined with detailed kinetic studies led to a deeper understanding of the mode of inhibition of EGFR-T790M and provided insight into the key principles for effective inhibition of the recently discovered tertiary mutation at EGFR-C797S.


Assuntos
Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Cinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Fosforilação , Mutação Puntual , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia
18.
ACS Med Chem Lett ; 7(1): 2-5, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26819655

RESUMO

In the last five years, the detailed understanding of how to overcome T790M drug resistance in non-small cell lung cancer (NSCLC) has culminated in the development of a third-generation of covalent EGFR inhibitors with excellent clinical outcomes. However, the emergence of a newly discovered acquired drug resistance challenges the concept of small molecule targeted cancer therapy in NSCLC.

19.
J Med Chem ; 58(17): 6844-63, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26275028

RESUMO

Receptor tyrosine kinases represent one of the prime targets in cancer therapy, as the dysregulation of these elementary transducers of extracellular signals, like the epidermal growth factor receptor (EGFR), contributes to the onset of cancer, such as non-small cell lung cancer (NSCLC). Strong efforts were directed to the development of irreversible inhibitors and led to compound CO-1686, which takes advantage of increased residence time at EGFR by alkylating Cys797 and thereby preventing toxic effects. Here, we present a structure-based approach, rationalized by subsequent computational analysis of conformational ligand ensembles in solution, to design novel and irreversible EGFR inhibitors based on a screening hit that was identified in a phenotype screen of 80 NSCLC cell lines against approximately 1500 compounds. Using protein X-ray crystallography, we deciphered the binding mode in engineered cSrc (T338M/S345C), a validated model system for EGFR-T790M, which constituted the basis for further rational design approaches. Chemical synthesis led to further compound collections that revealed increased biochemical potency and, in part, selectivity toward mutated (L858R and L858R/T790M) vs nonmutated EGFR. Further cell-based and kinetic studies were performed to substantiate our initial findings. Utilizing proteolytic digestion and nano-LC-MS/MS analysis, we confirmed the alkylation of Cys797.


Assuntos
Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Receptores ErbB/genética , Humanos , Cinética , Neoplasias Pulmonares , Modelos Moleculares , Conformação Molecular , Mutação , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Bibliotecas de Moléculas Pequenas , Solubilidade , Relação Estrutura-Atividade , Quinases da Família src/química , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA