Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta ; 251(3): 58, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020353

RESUMO

MAIN CONCLUSION: pRbcS-T1 and pMALD1, two new trichome-specific promoters of Nicotiana tabacum, were identified and their strength and specificity were compared to those of previously described promoters in this species. Nicotiana tabacum has emerged as a suitable host for metabolic engineering of terpenoids and derivatives in tall glandular trichomes, which actively synthesize and secrete specialized metabolites. However, implementation of an entire biosynthetic pathway in glandular trichomes requires the identification of trichome-specific promoters to appropriately drive the expression of the transgenes needed to set up the desired pathway. In this context, RT-qPCR analysis was carried out on wild-type N. tabacum plants to compare the expression pattern and gene expression level of NtRbcS-T1 and NtMALD1, two newly identified genes expressed in glandular trichomes, with those of NtCYP71D16, NtCBTS2α, NtCPS2, and NtLTP1, which were reported in the literature to be specifically expressed in glandular trichomes. We show that NtRbcS-T1 and NtMALD1 are specifically expressed in glandular trichomes like NtCYP71D16, NtCBTS2α, and NtCPS2, while NtLTP1 is also expressed in other leaf tissues as well as in the stem. Transcriptional fusions of each of the six promoters to the GUS-VENUS reporter gene were introduced in N. tabacum by Agrobacterium-mediated transformation. Almost all transgenic lines displayed GUS activity in tall glandular trichomes, indicating that the appropriate cis regulatory elements were included in the selected promoter regions. However, unlike for the other promoters, no trichome-specific line was obtained for pNtLTP1:GUS-VENUS, in agreement with the RT-qPCR data. These data thus provide two new transcription promoters that could be used in metabolic engineering of glandular trichomes.


Assuntos
Nicotiana/genética , Regiões Promotoras Genéticas , Tricomas/genética , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Folhas de Planta/genética , Caules de Planta/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Plant Physiol ; 173(4): 2110-2120, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28250069

RESUMO

Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundle-sheath (C4 plants), and guard cells. In certain species, photosynthesis also takes place in the secretory cells of glandular trichomes, which are epidermal outgrowths (hairs) involved in the secretion of specialized metabolites. However, photosynthesis and, in particular, Rubisco have not been characterized in trichomes. Here, we show that tobacco (Nicotiana tabacum) trichomes contain a specific Rubisco small subunit, NtRbcS-T, which belongs to an uncharacterized phylogenetic cluster (T). This cluster contains RbcS from at least 33 species, including monocots, many of which are known to possess glandular trichomes. Cluster T is distinct from the cluster M, which includes the abundant, functionally characterized RbcS isoforms expressed in mesophyll or bundle-sheath cells. Expression of NtRbcS-T in Chlamydomonas reinhardtii and purification of the full Rubisco complex showed that this isoform conferred higher Vmax and Km values as well as higher acidic pH-dependent activity than NtRbcS-M, an isoform expressed in the mesophyll. This observation was confirmed with trichome extracts. These data show that an ancient divergence allowed for the emergence of a so-far-uncharacterized RbcS cluster. We propose that secretory trichomes have a particular Rubisco uniquely adapted to secretory cells where CO2 is released by the active specialized metabolism.


Assuntos
Fotossíntese , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Tricomas/enzimologia , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/metabolismo , Tricomas/genética , Tricomas/metabolismo
3.
Plant Biotechnol J ; 12(4): 457-67, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24373507

RESUMO

Nicotiana tabacum suspension cells have been widely used to produce monoclonal antibodies, but the yield of secreted antibodies is usually low probably because of proteolytic degradation. Most IgGs that have been expressed in suspension cells have been of the human IgG1 isotype. In this study, we examined whether other isotypes displayed the same sensitivity to proteolytic degradation and whether the choice of plant host species mattered. Human serum IgG displayed different degradation profiles when incubated in spent culture medium from N. tabacum, Nicotiana benthamiana or Arabidopsis thaliana suspension cells. Zymography showed that the protease profile was host species dependent. Three human isotypes, IgG1, IgG2 and IgG4, and a mouse IgG2a were provided with the same heavy- and light-chain variable regions from an anti-human IgM antibody and expressed in N. tabacum cv. BY-2 and A. thaliana cv. Col-0 cells. Although all tested isotypes were detected in the extracellular medium using SDS-PAGE and a functional ELISA, up to 10-fold differences in the level of intact antibody were found according to the isotype expressed, to the host species and to the culture conditions. In the best combination (BY-2 cells secreting human IgG1), we reported accumulation of more than 30 mg/L of intact antibody in culture medium. The possibility of using IgG constant regions as a scaffold to allow stable accumulation of antibodies with different variable regions was demonstrated for human IgG2 and mouse IgG2a.


Assuntos
Arabidopsis/metabolismo , Técnicas de Cultura de Células/métodos , Isotipos de Imunoglobulinas/metabolismo , Nicotiana/metabolismo , Células Vegetais/metabolismo , Animais , Linhagem Celular , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Espaço Extracelular/metabolismo , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Camundongos , Plantas Geneticamente Modificadas , Proteólise , Especificidade da Espécie , Suspensões , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA