Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Brain Res ; 1833: 148866, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494098

RESUMO

Caffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A1 and A2A receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum. The harmful modulation of caffeine-induced inflammatory response involved the downregulation of the expression of A2A receptors, especially in the hippocampus. Caffeine treatment alone promoted the downregulation of the adenosinergic receptor Adora2A; however, this promotion effect was reversed by LPS. Although administering caffeine increased the expression of the enzymes DNA methyltransferases 1 and 3A and decreased the expression of the demethylase enzyme Tet1, this effect was reversed by LPS in the hippocampus of mice that were administered Caffeine + LPS, relative to the basal condition; no significant differences were observed in the methylation status of the promoter regions of adenosine receptors. Finally, the bioinformatics analysis of the expanded network demonstrated the following results: the Adora2B gene connects the extended networks of the adenosine receptors Adora1 and Adora2A; the Mapk3 and Esr1 genes connect the extended Adora1 network; the Mapk4 and Arrb2 genes connect the extended Adora2A network with the extended network of the proinflammatory cytokine Il1ß. These results indicated that the anti-inflammatory effects of acute caffeine administration in the hippocampus may be mediated by a complex network of interdependencies between the Adora2B and Adora2A genes.


Assuntos
Cafeína , Regulação para Baixo , Hipocampo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Receptor A2A de Adenosina , Animais , Lipopolissacarídeos/farmacologia , Receptor A2A de Adenosina/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Cafeína/farmacologia , Masculino , Regulação para Baixo/efeitos dos fármacos , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Interleucina-1beta/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente
3.
Neurotoxicology ; 97: 12-24, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37142061

RESUMO

Lead (Pb), a common environmental contaminant, and ethanol (EtOH), a widely available drug of abuse, are well-known neurotoxicants. In vivo, experimental evidence indicates that Pb exposure affects oxidative EtOH metabolism with a high impact on living organisms. On these bases, we evaluated the consequences of combined Pb and EtOH exposure on aldehyde dehydrogenase 2 (ALDH2) functionality. In vitro exposure to 10 µM Pb, 200 mM EtOH, or their combination for 24 h reduced ALDH2 activity and content in SH-SY5Y human neuroblastoma cells. In this scenario, we observed mitochondrial dysfunction characterized by reduced mass and membrane potential, decreased maximal respiration, and spare capacity. We also evaluated the oxidative balance in these cells finding a significant increase in reactive oxygen species (ROS) production and lipid peroxidation products under all treatments accompanied by an increase in catalase (CAT) activity and content. These data suggest that ALDH2 inhibition induces the activation of converging cytotoxic mechanisms resulting in an interplay between mitochondrial dysfunction and oxidative stress. Notably, NAD+ (1 mM for 24 h) restored ALDH2 activity in all groups, while an ALDH2 enhancer (Alda-1, 20 µM for 24 h) also reversed some of the deleterious effects resulting from impaired ALDH2 function. Overall, these results reveal the crucial role of this enzyme on the Pb and EtOH interaction and the potential of activators such as Alda-1 as therapeutic approaches against several conditions involving aldehydes accumulation.


Assuntos
Etanol , Neuroblastoma , Humanos , Aldeído-Desidrogenase Mitocondrial/metabolismo , Etanol/toxicidade , Chumbo/toxicidade , Chumbo/metabolismo , Neuroblastoma/metabolismo , Antioxidantes/metabolismo , Oxirredução , Linhagem Celular , Mitocôndrias/metabolismo , Benzodioxóis
4.
Antioxidants (Basel) ; 12(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36978802

RESUMO

Evidence has shown that caffeine administration reduces pro-inflammatory biomarkers, delaying fatigue and improving endurance performance. This study examined the effects of caffeine administration on the expression of inflammatory-, adenosine receptor- (the targets of caffeine), epigenetic-, and oxidative metabolism-linked genes in the vastus lateralis muscle of mice submitted to lipopolysaccharide (LPS)-induced inflammation. We showed that caffeine pre-treatment before LPS administration reduced the expression of Il1b, Il6, and Tnfa, and increased Il10 and Il13. The negative modulation of the inflammatory response induced by caffeine involved the reduction of inflammasome components, Asc and Casp1, promoting an anti-inflammatory scenario. Caffeine treatment per se promoted the upregulation of adenosinergic receptors, Adora1 and Adora2A, an effect that was counterbalanced by LPS. Moreover, there was observed a marked Adora2A promoter hypermethylation, which could represent a compensatory response towards the increased Adora2A expression. Though caffeine administration did not alter DNA methylation patterns, the expression of DNA demethylating enzymes, Tet1 and Tet2, was increased in mice receiving Caffeine+LPS, when compared with the basal condition. Finally, caffeine administration attenuated the LPS-induced catabolic state, by rescuing basal levels of Ampk expression. Altogether, the anti-inflammatory effects of caffeine in the muscle can be mediated by modifications on the epigenetic landscape.

5.
Brain Res ; 1803: 148234, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634900

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disease, mainly characterized by increased blood glucose and insulin dysfunction. In response to the persistent systemic hyperglycemic state, numerous metabolic and physiological complications have already been well characterized. However, its relationship to bone fragility, cognitive deficits and increased risk of dementia still needs to be better understood. The impact of chronic hyperglycemia on bone physiology and architecture was assessed in a model of chronic hyperglycemia induced by a single intraperitoneal administration of streptozotocin (STZ; 55 mg/kg) in Wistar rats. In addition, the bone-to-brain communication was investigated by analyzing the gene expression and methylation status of genes that encode the main osteokines released by the bone [Fgf23 (fibroblast growth factor 23), Bglap (bone gamma-carboxyglutamate protein) and Lcn2 (lipocalin 2) and their receptors in both, the bone and the brain [Fgfr1 (fibroblast growth factor receptor 1), Gpr6A (G-protein coupled receptor family C group 6 member A), Gpr158 (G protein-coupled receptor 158) and Slc22a17 (Solute carrier family 22 member 17)]. It was observed that chronic hyperglycemia negatively impacted on bone biology and compromised the balance of the bone-brain endocrine axis. Ultrastructural disorganization was accompanied by global DNA hypomethylation and changes in gene expression of DNA-modifying enzymes that were accompanied by changes in the methylation status of the osteokine promoter region Bglap and Lcn2 (lipocalin 2) in the femur. Additionally, the chronic hyperglycemic state was accompanied by modulation of gene expression of the osteokines Fgf23 (fibroblast growth factor 23), Bglap (bone gamma-carboxyglutamate protein) and Lcn2 (lipocalin 2) in the different brain regions. However, transcriptional regulation mediated by DNA methylation was observed only for the osteokine receptors, Fgfr1(fibroblast growth factor receptor 1) in the striatum and Gpr158 (G protein-coupled receptor 158) in the hippocampus. This is a pioneer study demonstrating that the chronic hyperglycemic state compromises the crosstalk between bone tissue and the brain, mainly affecting the hippocampus, through transcriptional silencing of the Bglap receptor by hypermethylation of Gpr158 gene.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Hiperglicemia , Receptores Acoplados a Proteínas G , Animais , Ratos , Ácido 1-Carboxiglutâmico/genética , Ácido 1-Carboxiglutâmico/metabolismo , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Repressão Epigenética , Hipocampo/metabolismo , Homeostase , Hiperglicemia/metabolismo , Lipocalina-2/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Ratos Wistar , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
J Clin Med ; 11(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36013137

RESUMO

BACKGROUND: Fibromyalgia (FM) is considered a stress-related disorder characterized mainly by chronic widespread pain. Its pathogenesis is unknown, but cumulative evidence points at dysfunctional transmitter systems and inflammatory biomarkers that may underlie the major symptoms of the condition. This study aimed to evaluate pain scores (primary outcome), quality of life, inflammatory biomarkers and neurotransmitter systems in women with FM (secondary outcomes) subjected to gentle touch therapy (GTT) or placebo. METHODS: A total of 64 female patients with FM were randomly assigned to two groups, namely GTT (n = 32) or Placebo (n = 32). Clinical assessments were conducted at baseline and post-intervention with six-month follow-up. We measured serum catecholamines (dopamine), indolamines and intermediary metabolites (serotonin or 5-hydroxyindolacetic acid (5-HIAA)), as well as tetrahydrobiopterin (BH4), which is a cofactor for the synthesis of neurotransmitters and inflammatory biomarkers in women with FM. A group of healthy individuals with no intervention (control group) was used to compare biochemical measurements. Intervention effects were analyzed using repeated measures (RM) two-way ANOVA followed by Bonferroni post hoc test and mixed ANCOVA model with intention to treat. RESULTS: Compared to placebo, the GTT group presented lower pain scores and brain-derived neurotrophic factor (BDNF) levels without altering the quality of life of women with FM. Changes in BDNF had a mediating role in pain. Higher baseline serum BDNF and 5-HIAA or those with a history of anxiety disorder showed a higher reduction in pain scores across time. However, women with higher serum dopamine levels at baseline showed a lower effect of the intervention across the observation period revealed by an ANCOVA mixed model. CONCLUSIONS: In conclusion, lower pain scores were observed in the GTT group compared to the placebo group without altering the quality of life in women with FM. Reductions in BDNF levels could be a mechanism of FM pain status improvement. In this sense, the present study encourages the use of these GTT techniques as an integrative and complementary treatment of FM.

8.
Sci Transl Med ; 14(660): eabj1531, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044597

RESUMO

Increased tetrahydrobiopterin (BH4) generated in injured sensory neurons contributes to increased pain sensitivity and its persistence. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the de novo BH4 synthetic pathway, and human single-nucleotide polymorphism studies, together with mouse genetic modeling, have demonstrated that decreased GCH1 leads to both reduced BH4 and pain. However, little is known about the regulation of Gch1 expression upon nerve injury and whether this could be modulated as an analgesic therapeutic intervention. We performed a phenotypic screen using about 1000 bioactive compounds, many of which are target-annotated FDA-approved drugs, for their effect on regulating Gch1 expression in rodent injured dorsal root ganglion neurons. From this approach, we uncovered relevant pathways that regulate Gch1 expression in sensory neurons. We report that EGFR/KRAS signaling triggers increased Gch1 expression and contributes to neuropathic pain; conversely, inhibiting EGFR suppressed GCH1 and BH4 and exerted analgesic effects, suggesting a molecular link between EGFR/KRAS and pain perception. We also show that GCH1/BH4 acts downstream of KRAS to drive lung cancer, identifying a potentially druggable pathway. Our screen shows that pharmacologic modulation of GCH1 expression and BH4 could be used to develop pharmacological treatments to alleviate pain and identified a critical role for EGFR-regulated GCH1/BH4 expression in neuropathic pain and cancer in rodents.


Assuntos
Neoplasias Pulmonares , Neuralgia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Biopterinas/análogos & derivados , Receptores ErbB/genética , Receptores ErbB/metabolismo , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
9.
Mol Neurobiol ; 57(9): 3902-3919, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32621279

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a prevalent and disabling disorder, mainly characterized by hyperactivity, inattention, and impulsivity, but also by olfactory and memory impairments that frequently persist throughout lifetime. The pathophysiology of ADHD is complex, involving several brain regions and neural pathways including alterations in adenosine neuromodulation. The administration of caffeine (a non-selective adenosine receptor antagonist) and physical exercise have been independently pointed as effective approaches for the management of ADHD symptoms. Here, we evaluated the effects of caffeine consumption (0.3 mg/mL in drinking water) plus physical exercise in running wheels during 6 weeks-starting during either adolescence (30 days old) or adulthood (4-5 months old)-on behavioral performance (including olfactory discrimination, open field, object recognition, and water maze tests) on the brain levels of monoamines (by high-performance liquid chromatography), on proteins related to synaptic plasticity and on brain-derived neurotrophic factor signaling (by Western blot analysis) in spontaneously hypertensive rats (SHRs), a validated animal model of ADHD. SHRs displayed persistent impairments of olfactory and short-term recognition memory from adolescence to adulthood, which were accompanied by lower levels of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex and hippocampus. The association of caffeine plus physical exercise during adolescence or adulthood restored the olfactory discrimination ability and, in an independent manner, improved short-term recognition memory of SHRs. These benefits were not associated to alterations in locomotor activity or in the hypertensive phenotype. The association of caffeine consumption plus physical exercise during adolescence increased the levels of SNAP-25, syntaxin, and serotonin in the hippocampus and prefrontal cortex, and striatal dopamine levels in SHRs. These results provide new evidence of the potential of caffeine and physical exercise, starting at adolescence or adult life, to improve behavioral impairments and stimulate neuroplasticity in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Comportamento Animal , Cafeína/administração & dosagem , Plasticidade Neuronal , Condicionamento Físico Animal , Envelhecimento , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cafeína/farmacologia , Modelos Animais de Doenças , Dopamina/metabolismo , Masculino , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Wistar , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Front Neurosci ; 14: 620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694973

RESUMO

Despite the identification of molecular mechanisms associated with pain persistence, no significant therapeutic improvements have been made. Advances in the understanding of the molecular mechanisms that induce pain hypersensitivity will allow the development of novel, effective, and safe therapies for chronic pain. Various pro-inflammatory cytokines are known to be increased during chronic pain, leading to sustained inflammation in the peripheral and central nervous systems. The pro-inflammatory environment activates additional metabolic routes, including the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways, which generate bioactive soluble metabolites with the potential to modulate neuropathic and inflammatory pain sensitivity. Inflammation-induced upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) and guanosine triphosphate cyclohydrolase I (GTPCH), both rate-limiting enzymes of KYN and BH4 biosynthesis, respectively, have been identified in experimental chronic pain models as well in biological samples from patients affected by chronic pain. Inflammatory inducible KYN and BH4 pathways upregulation is characterized by increase in pronociceptive compounds, such as quinolinic acid (QUIN) and BH4, in addition to inflammatory mediators such as interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). As expected, the pharmacologic and genetic experimental manipulation of both pathways confers analgesia. Many metabolic intermediates of these two pathways such as BH4, are known to sustain pain, while others, like xanthurenic acid (XA; a KYN pathway metabolite) have been recently shown to be an inhibitor of BH4 synthesis, opening a new avenue to treat chronic pain. This review will focus on the KYN/BH4 crosstalk in chronic pain and the potential modulation of these metabolic pathways that could induce analgesia without dependence or abuse liability.

11.
J Neuroimmunol ; 347: 577330, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32731051

RESUMO

We investigated serum levels of 29 cytokines and immune-activated kynurenine and tetrahydrobiopterin pathway metabolites in 15 complex regional pain syndrome (CRPS) subjects and 14 healthy controls. Significant reductions in interleukin-37 and tryptophan were found in CRPS subjects, along with positive correlations between kynurenine/tryptophan ratio and TNF-α levels with kinesiophobia, tetrahydrobiopterin levels with McGill pain score, sRAGE, and xanthurenic acid and neopterin levels with depression, anxiety and stress scores. Using machine learning, we identified a set of binary variables, including IL-37 and GM-CSF, capable of distinguishing controls from established CRPS subjects. These results suggest possible involvement of various inflammatory markers in CRPS pathogenesis.


Assuntos
Síndromes da Dor Regional Complexa/diagnóstico , Síndromes da Dor Regional Complexa/imunologia , Interleucina-1/imunologia , Cinurenina/imunologia , Triptofano/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adulto , Idoso , Biomarcadores/sangue , Síndromes da Dor Regional Complexa/sangue , Feminino , Humanos , Interleucina-1/sangue , Cinurenina/sangue , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Triptofano/sangue , Fator de Necrose Tumoral alfa/sangue
12.
J Endocrinol ; 245(2): 179-191, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32092035

RESUMO

The molecular mechanisms underlying the capability of pituitary tumours to avoid unregulated cell proliferation are still not well understood. However, the NF-κB transcription factor, which is able to modulate not only cellular senescence but also tumour progression, has emerged as a targeted candidate. This work was focused on the NF-κB role in cellular senescence during the progression of experimental pituitary tumours. Also, the contribution of the signalling pathways in senescence-associated NF-κB activation and the senescence-associated secretory phenotype (SASP) and pro-survival-NF-κB target genes transcription were analysed. A robust NF-κB activation was seen at E20-E40 of tumour development accompanied by a marked SA-ß-Gal co-reactivity in the tumour pituitary parenchyma. The induction of TNFα and IL1-ß as specific SASP-related NF-κB target genes as well as Bcl-2 and Bcl-xl pro-survival genes was shown to be accompanied by increases in the p-p38 MAPK protein levels, starting at the E20 stage and strengthening from 40 to 60 days of tumour growth. It is noteworthy that p-JNK displayed a similar pattern of activation during pituitary tumour development, while p-AKT and p-ERK1/2 were downregulated. By employing a pharmacological strategy to abrogate NF-κB activity, we demonstrated a marked reduction in SA-ß-Gal activity and a slight decrease in Ki67 immunopositive cells after NF-κB blockade. These results suggest a central role for NF-κB in the regulation of the cellular senescence programme, leading to the strikingly benign intrinsic nature of pituitary adenomas.


Assuntos
Senescência Celular/genética , NF-kappa B/fisiologia , Neoplasias Hipofisárias/genética , Transdução de Sinais/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genes bcl-2/fisiologia , Hipoxantina Fosforribosiltransferase/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Proteína bcl-X/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
J Toxicol Environ Health A ; 83(4): 153-167, 2020 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-32085696

RESUMO

Several investigators demonstrated that glyphosate formulations produce neurotoxicity associated with oxidative stress, alterations in glutamatergic system, inhibition of acetylcholinesterase activity and mitochondrial dysfunction. However, the underlying molecular mechanisms following exposure to this herbicide on astrocytes are unclear. Thus, the aim of the present study was to determine the activity of enzymes related to energy metabolism, in addition to oxidative stress parameters, mitochondrial mass, nuclear area, and autophagy in astrocytes treated with a glyphosate-based herbicide. Our results showed that 24 h exposure to a glyphosate-based herbicide decreased (1) cell viability, (2) activities of mitochondrial respiratory chain enzymes and creatine kinase (CK), (3) mitochondrial mass, and (4) nuclear area in rat astroglioma cell line (C6 cells). However, non-protein thiol (NPSH) levels were increased but catalase activity was not changed in cells exposed to the herbicide at non-cytotoxic concentrations. Low glyphosate concentrations elevated content of cells positive to autophagy-related proteins. Nuclear factor erythroid 2-related factor (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1) and PTEN-induced kinase 1 (PINK1) labeling were not markedly altered in cells exposed to glyphosate at the same concentrations that an increase in NPSH levels and positive cells to autophagy were found. It is conceivable that mitochondria and CK may be glyphosate-based herbicides targets. Further, autophagy induction and NPSH increase may be mechanisms initiated to avoid oxidative stress and cell death. However, more studies are needed to clarify the role of autophagy in astrocytes exposed to the herbicide and which components of the formulation might be triggering the effects observed here.


Assuntos
Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular , Glicina/toxicidade , Humanos , Espécies Reativas de Oxigênio , Glifosato
14.
Front Neurosci ; 13: 958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619946

RESUMO

INTRODUCTION: Facet joint injections (FJIs) of anesthetic and corticosteroids are useful for the diagnosis and treatment of low back pain (LBP). In the current study, we evaluated the efficacy of FJI on LBP treatment and the predictive variables of pain recurrence after FJI. METHODS: We included and followed prospectively forty-three consecutive patients with chronic LBP treated with FJI. Clinical assessments were carried out at a baseline 1 week before FJIs and after a 6-month follow-up visit using the visual analog scale (VAS) for pain, Oswestry Disability Index (ODI) for disability-specific measure and MacNab criteria for global effectiveness, and compared through analysis using paired-samples "t" tests. Multiple cox-regression analysis was used to identify the presurgical variables independently associated with pain recurrence anytime during the follow-up. In addition to the demographic, clinical, and surgical data, we also analyzed psychometric scales: Pain Catastrophizing Scale (PCS), Beck Anxiety Inventory (BAI), and Beck Depression Inventory (BDI). RESULTS: After a 6-month follow-up, thirty-two patients (74.4%) showed a clinically significant reduction of pain and twenty-seven (62.8%) reported a clinically significant improvement of disability. Presurgical catastrophizing (PCS score ≥ 5, adjusted HR 4.4, CI 95% 1.7-11.3, p = 0.002) and smoking (Adjusted HR 12.5, CI 95% 1.1-138.9, p = 0.04) remains associated with pain recurrence. CONCLUSION: FJI reduces LBP and disability of patients with unresponsive LBP. Pain-related cognitive and behavioral factors determined by pain catastrophizing and smoking were independently associated with pain recurrence after lumbar FJI. The results support the need of a multidisciplinary approach for presurgical evaluation of patients with chronic pain.

16.
Med Eng Phys ; 71: 108-113, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31303375

RESUMO

The purpose of this study was to investigate the effect of different doses of photobiomodulation (PBM) on mitochondrial respiratory complexes and oxidative cellular energy metabolic enzymes in the mitochondria of brain, muscle, and C6 glioma cells after different time intervals. C6 cells were irradiated with an AlGaInP laser at 10, 30, and 60 J/cm2 for 20, 60, and 120 s, respectively. After irradiation, the cells were maintained in serum-free Dulbecco's Modified Eagle's medium for 24 h, and biochemical measurements were made subsequently. Mitochondrial suspensions from adult rat skeletal muscles/brains were irradiated with an AlGaInP laser at the abovementioned doses. In one group, the reaction was stopped 5 min after irradiation and in the other 60 min after irradiation. Both the C6 cells that received the doses of 10 and 30 J/cm² showed increased complex I activity; the cells that were irradiated at 30 J/cm2 showed increased hexokinase activity. Five minutes after the introduction of PBM of the muscle mitochondria (at 30 and 60 J/cm2), the activity of complex I increased, while the activity of complex IV increased only at 60 J/cm2. One hour after the laser session, complex II activity increased in the cells treated with 10 and 60 J/cm²; however, complex IV activity showed an increase in all PBM groups. In brain mitochondria, 5 min after irradiation only the activity of complex IV increased in all PBM groups. One hour after the laser session, complex II activity increased at 60 J/cm2, and complex IV activity increased for all PBM groups when compared to controls. PBM could increase the activity of respiratory chain complexes in an apparently dose- and time-dependent manner.


Assuntos
Astrocitoma/patologia , Encéfalo/citologia , Terapia com Luz de Baixa Intensidade , Mitocôndrias/efeitos da radiação , Músculos/citologia , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Transporte de Elétrons/efeitos da radiação , Humanos , Mitocôndrias/metabolismo , Fatores de Tempo
17.
Physiol Behav ; 204: 248-255, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30794851

RESUMO

Benefits of exercise have been documented for many diseases with a chronic progression, including obesity, diabetes mellitus, cardiovascular diseases, neurodegenerative diseases, certain types of cancers, and overall mortality. Low-grade systemic inflammation is a key component of these pathologies and it has been demonstrated that can be prevented by performing regularly physical exercise. The aim of this study was to examine the effect of lipopolysaccharide (LPS)-induced inflammation on glucose and insulin tolerance, exercise performance, production of urinary neopterin and striatal neurotransmitters levels in adult male C57BL/6 mice. Increased blood glucose clearance and insulin sensitivity were observed after a single administration of glucose (2 g/kg, p.o.) or insulin (0.5 U/kg, i.p.). However, the repeated injection of LPS (0.33 mg/kg/day, i.p.) decreased glucose tolerance and increase urinary neopterin levels, pointing to systemic inflammation. In parallel to the urinary-increased neopterin, it was observed a significant reduction in the striatal dopamine levels and an increase in the serotonin/dopamine ratio. While a single LPS injection (0.33 mg/kg, i.p.) showed impaired performance in the incremental loading test (10 m/min, with 2 m/min increment every 3 min, at 9% grade), a moderate physical exercise protocol (treadmill for three weeks; 5 sessions/week; up to 50 min/day) prevented the exacerbation of immune system activation and preserved mitochondrial activity in skeletal muscle from mice with continuous LPS infusion (infusion pumps: 0.83 mg/kg/day, i.p.). In conclusion, the peripheral-induced inflammation elicited metabolic alterations that provoked impairment in striatal dopamine metabolism. The moderate exercise prevented the increase of urinary neopterin and preserved mitochondrial activity under LPS-induced inflammatory conditions.


Assuntos
Inflamação/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Neopterina/urina , Serotonina/metabolismo
18.
Cell Biol Toxicol ; 35(1): 49-58, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29961152

RESUMO

Developmental endochondral ossification requires constant blood supply, which is provided by the embryonic vascular network. High levels of homocysteine (Hcy) have vasculotoxic properties, but it remains unclear how Hcy disrupts blood vessel formation in endochondral ossification. Thus, we investigated the toxicity of Hcy on contents of vasculogenic factors (VEGF, VCAM-1, NOS3) and osteocalcin, using developing limbs as model. Chicken embryos were submitted to treatment with 20 µmol D-L Hcy at 12H&H and the analyses occur at 29H&H and 36H&H. We did not identify differences in the area of limb ossification in Hcy-treated (7.5 × 105 µm2 ± 3.9 × 104) and untreated embryos (7.6 × 105 µm2 ± 3.3 × 104) at 36H&H. In Hcy-treated embryos, we observed a significantly decrease of 46.8% at 29H&H and 26.0% at 36H&H in the number of VEGF-reactive cells. Also, treated embryos showed decrease of 98.7% in VCAM-1-reactive cells at 29H&H and 34.6% at 36H&H. The number of NOS3-reactive cells was reduced 54.0% at 29H&H and 91.5% at 36H&H, in the limbs of Hcy-treated embryos. Finally, in Hcy-treated embryos at 36H&H, we observed a reduction of 58.86% in the number of osteocalcin-reactive cells. Here, we demonstrated for the first time that the toxicity of Hcy is associated with a reduction in the contents of proteins involved in blood vessel formation and bone mineralization, which interferes with endochondral ossification of the limb during embryonic development. Graphical abstract.


Assuntos
Indutores da Angiogênese/metabolismo , Homocisteína/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Calcificação Fisiológica/efeitos dos fármacos , Embrião de Galinha , Neovascularização Fisiológica/efeitos dos fármacos , Osteocalcina/metabolismo
19.
Nature ; 563(7732): 564-568, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405245

RESUMO

Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity.


Assuntos
Doenças Autoimunes/imunologia , Biopterinas/análogos & derivados , Neoplasias/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Administração Oral , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/patologia , Biopterinas/biossíntese , Biopterinas/metabolismo , Biopterinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Coenzimas/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Humanos , Hipersensibilidade/imunologia , Ferro/metabolismo , Cinurenina/metabolismo , Cinurenina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
20.
Arch. Health Sci. (Online) ; 25(1): 13-17, 23/04/2018.
Artigo em Português | LILACS | ID: biblio-1046566

RESUMO

Introdução: A doença de Parkinson é a segunda doença neurodegenerativa mais prevalente na população mundial, com maior incidência nos idosos. A fadiga corresponde a um dos sintomas não motores mais frequentes na doença de Parkinson e prejudica a qualidade de vida desses pacientes. Esse cenário é potencializado por um estilo de vida sedentário, aumentando a dificuldade de realizar atividade física. Objetivo: Identificar o impacto do sintoma de fadiga na maior predisposição aosedentarismo e na realização de atividade física em pessoascom doença de Parkinson. Materiais e Métodos: Trata-se deuma revisão narrativa. Para esta revisão foram pesquisadosartigos em língua inglesa disponíveis na base de dadoseletrônica PubMED. Foram adotados os seguintes indexadorescom diferentes combinações: fatigue and Parkinson's diseaseand exercise or physical activity. Buscas manuais foram feitasnas referências dos artigos encontrados. Resultados: Apesarda alta prevalência de fadiga, o problema nem sempre éreconhecido clinicamente, em virtude do seu caráter subjetivoe pouco explorado. A etio/fisiopatologia da fadiga na doençade Parkinson ainda é mal compreendida e a abordagem clínicaé inexistente. Conclusão: A fadiga pode ser classificada comofadiga subjetiva, que não é objetivamente mensurável, oufatigabilidade, que se caracteriza pela dificuldade em iniciarou manter uma atividade física ou mental. A fatigabilidadeé uma barreira para a realização de atividades físicas, e estádiretamente relacionada a um estilo de vida sedentário emindivíduos com DP.


Introduction: Parkinson disease is the second most prevalent neurodegenerative disease among the population. It presents a higher incidence in the elderly people. Fatigue corresponds to one of the non-motor symptoms that appear more frequently in people with Parkinson disease. It negatively influences their quality of life. This scenario is enhanced by a sedentary lifestyle, increasing the difficulty of performing physical activity. Objective: Understand and identify the impact the fatigue into a greater predisposition in sedentary lifestyle and the accomplishment of physical activity in people with Parkinson's disease. Materials and Methods: A literature search was performed to identify full-text articles in English. We searched the electronic database of PubMED. The following keywords were used using different combinations: fatigue and Parkinson's disease and exercise or physical activity. Manual searches were performed in references in eligible articles. Results: Despite the high prevalence of fatigue, the problem is not always clinically recognized due to its subjective nature. The ethio/physiopathology of fatigue in Parkinson disease is still poorly understood, and treatment is unknown. Conclusion: Fatigue can be classified as subjective fatigue, in which it is not objectively measurable, or fatigability, which is characterized by the difficulty in initiating or maintaining a physical or mental activity. Fatigability is a barrier to physical activity, and is directly related to a sedentary lifestyle in individuals with Parkinson Disease.


Assuntos
Doença de Parkinson/complicações , Fadiga/fisiopatologia , Atividade Motora
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA