Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1226298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496751

RESUMO

Introduction: Coccidiosis caused by the Eimeria spp., an Apicomplexan protozoon, is a major intestinal disease that affects the poultry industry. Although most cases of coccidiosis are subclinical, Eimeria infections impair bird health and decrease overall performance, which can result in compromised welfare and major economic losses. Viable sporulated Eimeria oocysts are required for challenge studies and live coccidiosis vaccines. Potassium dichromate (PDC) is typically used as a preservative for these stocks during storage. Although effective and inexpensive, PDC is also toxic and carcinogenic. Chlorhexidine (CHX) salts may be a possible alternative, as this is a widely used disinfectant with less toxicity and no known carcinogenic associations. Methods: In vitro testing of CHX gluconate and CHX digluconate exhibited comparable oocyst integrity and viability maintenance with equivalent bacteriostatic and bactericidal activity to PDC. Subsequent use of CHX gluconate or digluconate-preserved Eimeria oocysts, cold-stored at 4°C for 5 months, as the inoculum also resulted in similar oocyst shedding and recovery rates when compared to PDC-preserved oocysts. Results and discussion: These data show that using 0.20% CHX gluconate could be a suitable replacement for PDC. Additionally, autofluorescence was used as a method to evaluate oocyst viability. Administration of artificially aged oocysts exhibiting >99% autofluorescence from each preserved treatment resulted in no oocyst output for CHX salt groups.

2.
Front Physiol ; 14: 1184636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324386

RESUMO

Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quality in broiler chickens subjected to cyclic heat stress (HS). Day-of-hatch Cobb 500 male broiler chicks (n = 475) were randomly divided into four groups. Group 1: No heat stress (Thermoneutral) + control diets with no antibiotics; Group 2: heat stress control + control diets; Group 3: heat stress + control diets supplemented with thymol chemotype (45 ppm) and herbal betaine (150 ppm) formulation EO1; Group 4: heat stress + control diets supplemented with phellandrene (45 ppm) and herbal betaine (150 ppm) formulation EO2. From day 10-42, the heat stress groups were exposed to cyclic HS at 35°C for 12 h (8:00-20:00). BW, BWG, FI, and FCRc were measured at d 0, 10, 28, and 42. Chickens were orally gavaged with FITC-d on days 10 (before heat stress) and 42. Morphometric analysis of duodenum and ileum samples and bone mineralization of tibias were done. Meat quality was assessed on day 43 with ten chickens per pen per treatment. Heat stress reduced BW by day 28 (p < 0.05) compared to thermoneutral chickens. At the end of the trial, chickens that received both formulations of EO1 and EO2 had significantly higher BW than HS control chickens. A similar trend was observed for BWG. FCRc was impaired by EO2 supplementation. There was a significant increase in total mortality in EO2 compared with EO1 EO1 chickens had lower FITC-d concentrations at day 42 than the HS control. In addition, EO1 treatment is not statistically different if compared to EO2 and thermoneutral. Control HS broilers had significantly lower tibia breaking strength and total ash at day 42 than heat-stressed chickens supplemented with EO1 and EO2. Heat stress affected intestinal morphology more than thermoneutral chickens. EO1 and EO2 improved intestinal morphology in heat-stressed chickens. Woody breast and white striping were more common in thermoneutral chickens than heat stress chickens. In conclusion, the EO-containing diet could improve broiler chicken growth during cyclic heat stress, becoming increasingly relevant in antibiotic-free production in harsh climates.

3.
J Anim Sci Biotechnol ; 12(1): 23, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33541441

RESUMO

BACKGROUND: Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on d 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene. RESULTS: The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P < 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P = 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P < 0.05) compared to other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively. CONCLUSIONS: CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.

4.
Front Vet Sci ; 3: 95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812526

RESUMO

Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility, reducing intestinal viscosity, maintaining a beneficial gut microbiota, and promoting healthy intestinal integrity in poultry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA