Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 13(1): 181, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758847

RESUMO

BACKGROUND: Genetic studies have been tremendously successful in identifying genomic regions associated with a wide variety of phenotypes, although the success of these studies in identifying causal genes, their variants, and their functional impacts has been more limited. METHODS: We identified 145 genes from IBD-associated genomic loci having endogenous expression within the intestinal epithelial cell compartment. We evaluated the impact of lentiviral transfer of the open reading frame (ORF) of these IBD genes into the HT-29 intestinal epithelial cell line via transcriptomic analyses. By comparing the genes in which expression was modulated by each ORF, as well as the functions enriched within these gene lists, we identified ORFs with shared impacts and their putative disease-relevant biological functions. RESULTS: Analysis of the transcriptomic data for cell lines expressing the ORFs for known causal genes such as HNF4a, IFIH1, and SMAD3 identified functions consistent with what is already known for these genes. These analyses also identified two major clusters of genes: Cluster 1 contained the known IBD causal genes IFIH1, SBNO2, NFKB1, and NOD2, as well as genes from other IBD loci (ZFP36L1, IRF1, GIGYF1, OTUD3, AIRE and PITX1), whereas Cluster 2 contained the known causal gene KSR1 and implicated DUSP16 from another IBD locus. Our analyses highlight how multiple IBD gene candidates can impact on epithelial structure and function, including the protection of the mucosa from intestinal microbiota, and demonstrate that DUSP16 acts a regulator of MAPK activity and contributes to mucosal defense, in part via its regulation of the polymeric immunoglobulin receptor, involved in the protection of the intestinal mucosa from enteric microbiota. CONCLUSIONS: This functional screen, based on expressing IBD genes within an appropriate cellular context, in this instance intestinal epithelial cells, resulted in changes to the cell's transcriptome that are relevant to their endogenous biological function(s). This not only helped in identifying likely causal genes within genetic loci but also provided insight into their biological functions. Furthermore, this work has highlighted the central role of intestinal epithelial cells in IBD pathophysiology, providing a scientific rationale for a drug development strategy that targets epithelial functions in addition to the current therapies targeting immune functions.


Assuntos
Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Fator 1 de Resposta a Butirato/genética , Proteínas de Transporte/genética , Fosfatases de Especificidade Dupla/genética , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Células HEK293 , Humanos , Imunoglobulinas , Fator Regulador 1 de Interferon/genética , Mucosa Intestinal/metabolismo , Intestinos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fatores de Transcrição Box Pareados/genética , Proteínas Quinases/genética , Fatores de Transcrição/genética , Transcriptoma , Proteases Específicas de Ubiquitina/genética , Proteína AIRE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA