Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 198: 115790, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007872

RESUMO

Inspired by traditional shaduf technology in the irrigation field, we fabricated a superhydrophobic stainless steel mesh bucket by layering polystyrene and SiO2 nanoparticles through a facile dip coating technique for effective oil-water separation. The superhydrophobic steel mesh bucket could effectively lift oil as well as microplastic pollutants from the water surface. The water contact angle of a two-layered polystyrene-silica coating was 158.5° ± 2°, while the oil contact angle was nearly 0°. The oil-water separation performance of superhydrophobic mesh was tested using several kinds of oil. The separation efficiency achieved for low viscous oil was 99.33 %, while 86.66 % efficiency was recorded for high viscous oil. The superhydrophobic mesh showed high durability against mechanical tests including bending, folding, twisting, adhesive tape tearing (25 cycles), and sandpaper abrasion (20 cycles). The mesh presented admirable thermal and chemical durability. The present superhydrophobic steel mesh bucket is a suitable candidate for large-scale application.


Assuntos
Plásticos , Aço Inoxidável , Poliestirenos , Dióxido de Silício , Aço , Interações Hidrofóbicas e Hidrofílicas
2.
Langmuir ; 30(39): 11761-9, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25192514

RESUMO

We prepared a simple, low-cost membrane suitable for gravity-driven oil-water separation and water purification. Composite membranes with selective wettability were fabricated from a mixture of aqueous poly(diallyldimethylammonium chloride) solution, sodium perfluorooctanoate, and silica nanoparticles. Simply dip-coating a stainless steel mesh using this mixture produced the oil-water separator. The contact angles (CAs) of hexadecane and water on the prepared composite membranes were 95 ± 2° and 0°, respectively, showing the oleophobicity and superhydrophilicity of the membrane. In addition, a graphene plug was stacked below the membrane to remove water-soluble organics by adsorption. As a result, this multifunctional device not only separates hexadecane from water, but also purifies water by the permeation of the separated water through the graphene plug. Here, methylene blue (MB) was removed as a demonstration. Membranes were characterized by high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy to elucidate the origin of their selective wettability.

3.
ACS Appl Mater Interfaces ; 5(21): 10597-604, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24090059

RESUMO

The ability to prepare solid surfaces with well-controlled superhydrophobic and superoleophilic properties is of paramount importance to water-oil separation technology. Herein, we successfully prepared superhydrophobic-superoleophilic membranes by single-step deposition of polystyrene (PS) nanofibers onto a stainless steel mesh via electrospinning. The contact angles of diesel and water on the prepared PS nanofiber membrane were 0° and 155° ± 3°, respectively. Applications of the PS nanofiber membrane toward separating liquids with low surface tension, such as oil, from water were investigated in detail. Gasoline, diesel, and mineral oil were tested as representative low-viscosity oils. The PS nanofiber membranes efficiently separated several liters of oil from water in a single step, of only a few minutes' duration. The superhydrophobic PS nanofiber membrane selectively absorbs oil, and is highly efficient at oil-water separation, making it a very promising material for oil spill remediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA