Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1067369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077913

RESUMO

Background: Every bout of exercise mobilizes and redistributes large numbers of effector lymphocytes with a cytotoxic and tissue migration phenotype. The frequent redistribution of these cells is purported to increase immune surveillance and play a mechanistic role in reducing cancer risk and slowing tumor progression in physically active cancer survivors. Our aim was to provide the first detailed single cell transcriptomic analysis of exercise-mobilized lymphocytes and test their effectiveness as a donor lymphocyte infusion (DLI) in xenogeneic mice engrafted with human leukemia. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from healthy volunteers at rest and at the end of an acute bout of cycling exercise. Flow cytometry and single-cell RNA sequencing was performed to identify phenotypic and transcriptomic differences between resting and exercise-mobilized cells using a targeted gene expression panel curated for human immunology. PBMCs were injected into the tail vein of xenogeneic NSG-IL-15 mice and subsequently challenged with a luciferase tagged chronic myelogenous leukemia cell line (K562). Tumor growth (bioluminescence) and xenogeneic graft-versus-host disease (GvHD) were monitored bi-weekly for 40-days. Results: Exercise preferentially mobilized NK-cell, CD8+ T-cell and monocyte subtypes with a differentiated and effector phenotype, without significantly mobilizing CD4+ regulatory T-cells. Mobilized effector lymphocytes, particularly effector-memory CD8+ T-cells and NK-cells, displayed differentially expressed genes and enriched gene sets associated with anti-tumor activity, including cytotoxicity, migration/chemotaxis, antigen binding, cytokine responsiveness and alloreactivity (e.g. graft-versus-host/leukemia). Mice receiving exercise-mobilized PBMCs had lower tumor burden and higher overall survival (4.14E+08 photons/s and 47%, respectively) at day 40 compared to mice receiving resting PBMCs (12.1E+08 photons/s and 22%, respectively) from the same donors (p<0.05). Human immune cell engraftment was similar for resting and exercise-mobilized DLI. However, when compared to non-tumor bearing mice, K562 increased the expansion of NK-cell and CD3+/CD4-/CD8- T-cells in mice receiving exercise-mobilized but not resting lymphocytes, 1-2 weeks after DLI. No differences in GvHD or GvHD-free survival was observed between groups either with or without K562 challenge. Conclusion: Exercise in humans mobilizes effector lymphocytes with an anti-tumor transcriptomic profile and their use as DLI extends survival and enhances the graft-versus-leukemia (GvL) effect without exacerbating GvHD in human leukemia bearing xenogeneic mice. Exercise may serve as an effective and economical adjuvant to increase the GvL effects of allogeneic cell therapies without intensifying GvHD.


Assuntos
Doença Enxerto-Hospedeiro , Leucemia , Humanos , Camundongos , Animais , Leucócitos Mononucleares , Transcriptoma , Células Matadoras Naturais , Camundongos Endogâmicos , Leucemia/genética , Leucemia/terapia
2.
Med Sci Sports Exerc ; 55(6): 991-1002, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719647

RESUMO

PURPOSE: Acute exercise redistributes large numbers of memory T cells, which may contribute to enhanced immune surveillance in regular exercisers. It is not known, however, if acute exercise promotes a broad or oligoclonal T-cell receptor (TCR) repertoire or evokes transcriptomic changes in "exercise-responsive" T-cell clones. METHODS: Healthy volunteers completed a graded bout of cycling exercise up to 80% V̇O 2max . DNA was extracted from peripheral blood mononuclear cells collected at rest, during exercise (EX), and 1 h after (+1H) exercise, and processed for deep TCR-ß chain sequencing and tandem single-cell RNA sequencing. RESULTS: The number of unique clones and unique rearrangements was decreased at EX compared with rest ( P < 0.01) and +1H ( P < 0.01). Productive clonality was increased compared with rest ( P < 0.05) and +1H ( P < 0.05), whereas Shannon's Index was decreased compared with rest ( P < 0.05) and +1H ( P < 0.05). The top 10 rearrangements in the repertoire were increased at EX compared with rest ( P < 0.05) and +1H ( P < 0.05). Cross-referencing TCR-ß sequences with a public database (VDJdb) revealed that exercise increased the number of clones specific for the most prevalent motifs, including Epstein-Barr virus, cytomegalovirus, and influenza A. We identified 633 unique exercise-responsive T-cell clones that were mobilized and/or egressed in response to exercise. Among these clones, there was an upregulation in genes related to cell death, cytotoxicity, and activation ( P < 0.05). CONCLUSIONS: Acute exercise promotes an oligoclonal T-cell repertoire by preferentially mobilizing the most dominant clones, several of which are specific to known viral antigens and display differentially expressed genes indicative of cytotoxicity, activation, and apoptosis.


Assuntos
Infecções por Vírus Epstein-Barr , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Leucócitos Mononucleares/metabolismo , Herpesvirus Humano 4/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Células Clonais/metabolismo , Exercício Físico
3.
Front Immunol ; 13: 938106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189306

RESUMO

CD3+/CD56+ Natural killer (NK) cell-like T-cells (NKT-like cells) represent <5% of blood lymphocytes, display a cytotoxic phenotype, and can kill various cancers. NKT-like cells can be expanded ex vivo into cytokine-induced killer (CIK) cells, however this therapeutic cell product has had mixed results against hematological malignancies in clinical trials. The aim of this study was to determine if NKT-like cells mobilized during acute cycling exercise could be used to generate more potent anti-tumor CIK cells from healthy donors. An acute exercise bout increased NKT-like cell numbers in blood 2-fold. Single cell RNA sequencing revealed that exercise mobilized NKT-like cells have an upregulation of genes and transcriptomic programs associated with enhanced anti-tumor activity, including cytotoxicity, cytokine responsiveness, and migration. Exercise, however, did not augment the ex vivo expansion of CIK cells or alter their surface phenotypes after 21-days of culture. CIK cells expanded at rest, during exercise (at 60% and 80% VO2max) or after (1h post) were equally capable of killing leukemia, lymphoma, and multiple myeloma target cells with and without cytokine (IL-2) and antibody (OKT3) priming in vitro. We conclude that acute exercise in healthy donors mobilizes NKT-like cells with an upregulation of transcriptomic programs involved in anti-tumor activity, but does not augment the ex vivo expansion of CIK cells.


Assuntos
Células Matadoras Induzidas por Citocinas , Neoplasias , Citotoxicidade Imunológica , Exercício Físico , Humanos , Interleucina-2/farmacologia , Muromonab-CD3/farmacologia , Transcriptoma
4.
Sci Rep ; 11(1): 8775, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888854

RESUMO

The presence of actinic keratoses (AKs) increases a patient's risk of developing squamous cell carcinoma by greater than six-fold. We evaluated the effect of topical treatment with imiquimod on the tumor microenvironment by measuring transcriptomic differences in AKs before and after treatment with imiquimod 3.75%. Biopsies were collected prospectively from 21 patients and examined histologically. RNA was extracted and transcriptomic analyses of 788 genes were performed using the nanoString assay. Imiquimod decreased number of AKs by study endpoint at week 14 (p < 0.0001). Post-imiquimod therapy, levels of CDK1, CXCL13, IL1B, GADPH, TTK, ILF3, EWSR1, BIRC5, PLAUR, ISG20, and C1QBP were significantly lower (adjusted p < 0.05). Complete responders (CR) exhibited a distinct pattern of inflammatory gene expression pre-treatment relative to incomplete responders (IR), with alterations in 15 inflammatory pathways (p < 0.05) reflecting differential expression of 103 genes (p < 0.05). Presence of adverse effects was associated with improved treatment response. Differences in gene expression were found between pre-treatment samples in CR versus IR, suggesting that higher levels of inflammation pre-treament may play a part in regression of AKs. Further characterization of the immune micro-environment in AKs may help develop biomarkers predictive of response to topical immune modulators and may guide therapy.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Expressão Gênica , Imiquimode/uso terapêutico , Ceratose Actínica/tratamento farmacológico , Ceratose Actínica/genética , Transcriptoma , Adjuvantes Imunológicos/administração & dosagem , Administração Tópica , Idoso , Idoso de 80 Anos ou mais , Biópsia , Feminino , Humanos , Imiquimode/administração & dosagem , Ceratose Actínica/patologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
5.
Cancers (Basel) ; 12(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570879

RESUMO

Whole exome sequencing (WES) of matched tumor-normal pairs in rare tumors has the potential to identify genome-wide mutations and copy number alterations (CNAs). We evaluated 27 rare cancer patients with tumor-normal matching by WES and tumor-only next generation sequencing (NGS) as a comparator. Our goal was to: 1) identify known and novel variants and CNAs in rare cancers with comparison to common cancers; 2) examine differences between germline and somatic variants and how that functionally impacts rare tumors; 3) detect and characterize alleles in biologically relevant genes-pathways that may be of clinical importance but not represented in classical cancer genes. We identified 3343 germline single nucleotide variants (SNVs) and small indel variants-1670 in oncogenes and 1673 in tumor suppressor genes-generating an average of 124 germline variants/case. The number of somatic SNVs and small indels detected in all cases was 523:306 in oncogenes and 217 in tumor suppressor genes. Of the germline variants, six were identified to be pathogenic or likely pathogenic. In the 27 analyzed rare cancer cases, CNAs are variable depending on tumor type, germline pathogenic variants are more common. Cell fate pathway mutations (e.g., Hippo, Notch, Wnt) dominate pathogenesis and double hit (mutation + CNV) represent ~18% cases.

6.
Epilepsy Res ; 155: 106145, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195185

RESUMO

Despite recent advances in our understanding of synaptic transmission associated with epileptogenesis, the molecular mechanisms that control seizure frequency in patients with temporal lobe epilepsy (TLE) remain obscure. RNA-Seq was performed on hippocampal tissue resected from 12 medically intractable TLE patients with pre-surgery seizure frequencies ranging from 0.33 to 120 seizures per month. Differential expression (DE) analysis of individuals with low (LSF, mean = 4 seizure/month) versus high (HSF, mean = 60 seizures/month) seizure frequency identified 979 genes with ≥2-fold change in transcript abundance (FDR-adjusted p-value ö0.05). Comparisons with post-mortem controls revealed a large number of downregulated genes in the HSF (1676) versus LSF (399) groups. More than 50 signaling pathways were inferred to be deactivated or activated, with Signal Transduction as the central hub in the pathway network. While neuroinflammation pathways were activated in both groups, key neuronal system pathways were systematically deactivated in the HSF group, including calcium, CREB and Opioid signaling. We also infer that enhanced expression of a signaling cascade promoting synaptic downscaling may have played a key role in maintaining a higher seizure threshold in the LSF cohort. These results suggest that therapeutic approaches targeting synaptic scaling pathways may aid in the treatment of seizures in TLE.


Assuntos
Epilepsia do Lobo Temporal/genética , Hipocampo/fisiopatologia , Neurônios/fisiologia , Convulsões/genética , Transdução de Sinais/genética , Adolescente , Adulto , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Perfilação da Expressão Gênica , Hipocampo/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/fisiopatologia , Convulsões/cirurgia , Lobo Temporal/fisiopatologia , Lobo Temporal/cirurgia , Adulto Jovem
7.
Cancer Genet ; 222-223: 25-31, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29666005

RESUMO

High grade B-cell lymphoma (HGBCL) by WHO 2016 classification requires rearrangements of MYC and BCL2 and/or BCL6, practically covering the so called "double-hit" or "triple hit" lymphomas. We report a case of HGBCL "triple-hit" lymphoma in a 64-year old female. Cytogenetic and fluorescence in situ hybridization (FISH) studies revealed complex karyotype including rearrangement of MYC to a novel, non-IG partner on chromosome 18, and rearrangement of BCL2, BCL6 and IGH as well as ins(3)(q21q27.3q25.1) among other abnormalities. FISH studies showed five copies of MYC and 3-8 copies of BCL2. Gene expression analysis by RNA sequencing showed that MYC, BCL2 and MECOM genes were overexpressed whereas BCL6 was under-expressed. BCL6 was fused to MBNL1 gene due to complex structural rearrangement. MYC was expressed in >70% of cells and BCL2 was diffusely but highly expressed by immunohistochemistry. No pathogenic mutations were identified by sequencing a 26-gene panel including TP53. The patient has unexpectedly been in complete remission for 12 months after diagnosis after intensive chemotherapy including DA-EPOCH regimen despite having HGBCL. The prognostication of HGBCL patients may further be improved by the sub-categorization of these lymphomas on the basis of more detailed genomic markers than merely the WHO 2016 classification.


Assuntos
Inversão Cromossômica , Genes myc , Linfoma de Células B/genética , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-myc/genética , Translocação Genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 3/genética , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Etoposídeo/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Ordem dos Genes , Humanos , Hibridização in Situ Fluorescente , Linfoma de Células B/tratamento farmacológico , Proteína do Locus do Complexo MDS1 e EVI1/genética , Pessoa de Meia-Idade , Gradação de Tumores , Prednisona/uso terapêutico , Indução de Remissão , Análise de Sequência de RNA , Resultado do Tratamento , Vincristina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA