Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884923

RESUMO

Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure-function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.


Assuntos
Membrana Basal/química , Membrana Basal/metabolismo , Prótese Vascular , Endotélio Vascular/citologia , Animais , Materiais Biocompatíveis , Bioimpressão , Matriz Extracelular , Humanos , Miócitos de Músculo Liso , Desenho de Prótese , Engenharia Tecidual/métodos
2.
Ann Biomed Eng ; 48(3): 913-926, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30815762

RESUMO

Vascular tissue engineering of the middle layer of natural arteries requires contractile smooth muscle cells (SMC) which can be differentiated from adipose-derived mesenchymal stem cells (ASC) by treatment with transforming growth factor-ß, sphingosylphosphorylcholine and bone morphogenetic protein-4 (TSB). Since mechanical stimulation may support or replace TSB-driven differentiation, we investigated its effect plus TSB-treatment on SMC orientation and contractile protein expression. Tubular fibrin scaffolds with incorporated ASC or pre-differentiated SMC were exposed to pulsatile perfusion for 10 days with or without TSB. Statically incubated scaffolds served as controls. Pulsatile incubation resulted in collagen-I expression and orientation of either cell type circumferentially around the lumen as shown by alpha smooth muscle actin (αSMA), calponin and smoothelin staining as early, intermediate and late marker proteins. Semi-quantitative Westernblot analyses revealed strongly increased αSMA and calponin expression by either pulsatile (12.48-fold; p < 0.01 and 38.15-fold; p = 0.07) or static incubation plus TSB pre-treatment (8.91-fold; p < 0.05 and 37.69-fold; p < 0.05). In contrast, contractility and smoothelin expression required both mechanical and TSB stimulation since it was 2.57-fold increased (p < 0.05) only by combining pulsatile perfusion and TSB. Moreover, pre-differentiation of ASC prior to pulsatile perfusion was not necessary since it could not further increase the expression level of any marker.


Assuntos
Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Túnica Média , Adipogenia , Adulto , Idoso , Reatores Biológicos , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular , Colágeno Tipo I , Feminino , Fibrina , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Estimulação Física , Pressão , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Estresse Mecânico , Engenharia Tecidual , Alicerces Teciduais , Fator de Crescimento Transformador beta/farmacologia
3.
Tissue Eng Part A ; 25(13-14): 936-948, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30648499

RESUMO

IMPACT STATEMENT: We here showed that even under optimized conditions for biochemical differentiation of adipose-derived stem cells (with respect to a pronounced marker protein expression for a reasonable period of time) it was not possible to obtain functional smooth muscle cells from all donors. Moreover, an underestimated role may play the effect of the scaffold material on smooth muscle cell functionality. Both aspects are crucial for the successful tissue engineering of the vascular medial layer combining autologous cells with a suitable scaffold material and thus should be thoroughly addressed in each individualized therapeutic approach.


Assuntos
Adipogenia , Células-Tronco Mesenquimais/citologia , Desenvolvimento Muscular , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Colágeno/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Fenótipo , Ratos , Transdução de Sinais , Doadores de Tecidos
4.
Tissue Eng Part A ; 24(5-6): 432-447, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978275

RESUMO

The limited availability of native vessels suitable for the application as hemodialysis shunts or bypass material demands new strategies in cardiovascular surgery. Tissue-engineered vascular grafts containing autologous cells are considered ideal vessel replacements due to the low risk of rejection. However, endothelial cells (EC), which are central components of natural blood vessels, are difficult to obtain from elderly patients of poor health. Umbilical cord blood represents a promising alternative source for EC, but their allogeneic origin corresponds with the risk of rejection after allotransplantation. To reduce this risk, the human leukocyte antigen class I (HLA I) complex was stably silenced by lentiviral vector-mediated RNA interference (RNAi) in EC from peripheral blood and umbilical cord blood and vein. EC from all three sources were transduced by 93.1% ± 4.8% and effectively, HLA I-silenced by up to 67% compared to nontransduced (NT) cells or transduced with a nonspecific short hairpin RNA, respectively. Silenced EC remained capable to express characteristic endothelial surface markers such as CD31 and vascular endothelial cadherin important for constructing a tight barrier, as well as von Willebrand factor and endothelial nitric oxide synthase important for blood coagulation and vessel tone regulation. Moreover, HLA I-silenced EC were still able to align under unidirectional flow, to take up acetylated low-density lipoprotein, and to form capillary-like tube structures in three-dimensional fibrin gels similar to NT cells. In particular, addition of adipose tissue-derived mesenchymal stem cells significantly improved tube formation capability of HLA I-silenced EC toward long and widely branched vascular networks necessary for prevascularizing vascular grafts. Thus, silencing HLA I by RNAi represents a promising technique to reduce the immunogenic potential of EC from three different sources without interfering with EC-specific morphological and functional properties required for vascular tissue engineering. This extends the spectrum of available cell sources from autologous to allogeneic sources, thereby accelerating the generation of tissue-engineered vascular grafts in acute clinical cases.


Assuntos
Prótese Vascular , Células Endoteliais/imunologia , Sangue Fetal/imunologia , Engenharia Tecidual , Adulto , Células Endoteliais/citologia , Sangue Fetal/citologia , Inativação Gênica , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Masculino
5.
Regen Med ; 9(6): 759-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431912

RESUMO

AIMS: To evaluate the impact of human plasma-derived fibronectin (FN) on human subchondral mesenchymal progenitor cells regarding cell migration, proliferation, and chondrogenic differentiation. MATERIALS & METHODS: Human subchondral mesenchymal progenitor cells were analyzed for their migration capacity upon treatment with human plasma-derived FN. Proliferation activity was evaluated by DNA content. For chondrogenesis, cells were cultured in high-density pellet cultures in the presence of FN, TGFß3, and a combination thereof. RESULTS: Treatment of progenitors with FN significantly increased the number of migrating cells and elevated proliferative activity. Histological staining indicated formation of an extracellular matrix with type II collagen. Gene expression analysis gave no evidence for chondrogenic differentiation mediated by FN, but revealed a significant induction of type II collagen expression. CONCLUSION: FN has a potential to recruit human subchondral mesenchymal progenitor cells, possibly supporting proliferation and matrix assembly in cartilage repair procedures using bioactive implants after microfracture treatment.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Fibronectinas/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco/citologia , Idoso , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Células Cultivadas , Quimiotaxia , Condrogênese/efeitos dos fármacos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Humanos , Técnicas Imunoenzimáticas , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Reação em Cadeia da Polimerase , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA