Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 321, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658158

RESUMO

IFNγ is an immune mediator with concomitant pro- and anti-tumor functions. Here, we provide evidence that IFNγ directly acts on intra-tumoral CD8 T cells to restrict anti-tumor responses. We report that expression of the IFNγ receptor ß chain (IFNγR2) in CD8 T cells negatively correlates with clinical responsiveness to checkpoint blockade in metastatic melanoma patients, suggesting that the loss of sensitivity to IFNγ contributes to successful antitumor immunity. Indeed, specific deletion of IFNγR in CD8 T cells promotes tumor control in a mouse model of melanoma. Chronic IFNγ inhibits the maintenance, clonal diversity and proliferation of stem-like T cells. This leads to decreased generation of T cells with intermediate expression of exhaustion markers, previously associated with beneficial anti-tumor responses. This study provides evidence of a negative feedback loop whereby IFNγ depletes stem-like T cells to restrict anti-tumor immunity. Targeting this pathway might represent an alternative strategy to enhance T cell-based therapies.


Assuntos
Melanoma , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos , Melanoma/terapia , Melanoma/tratamento farmacológico , Células Clonais/metabolismo
2.
Mol Ther Oncolytics ; 17: 278-292, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32368616

RESUMO

Tumor-targeted chimeric antigen receptor (CAR)-engineered T lymphocytes (CAR-T cells) have demonstrated striking clinical success, but their use has been associated with a constellation of toxicities. A better understanding of the pathogenesis of these toxicities is required to improve the safety profile of CAR-T cells. Herein, we describe a xenograft model of off-tumor CAR-T cell-associated toxicity. Human CAR-T cells targeted against HER2 using a small-protein binding domain induced acute, dose-dependent toxicities in mice. The inclusion of a CD28 or 4-1BB co-stimulatory domain in the CAR was required to produce toxicity; however, co-stimulation through CD28 was most toxic on a per-cell basis. CAR-T cell activation in the lungs and heart was associated with a systemic cytokine storm. The severity of observed toxicities was dependent upon the peripheral blood mononuclear cell (PBMC) donor used as a T cell source and paralleled the CD4+-to-CD8+ T cell ratio in the adoptive transfer product. CD4+ CAR-T cells were determined to be the primary contributors to CAR-T cell-associated toxicity. However, donor-specific differences persisted after infusion of a purified CD4+ CAR-T cell product, indicating a role for additional variables. This work highlights the contributions of CAR-T cell-intrinsic variables to the pathogenesis of off-tumor toxicity.

3.
Nat Commun ; 9(1): 3049, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076299

RESUMO

Engineering T cells with chimeric antigen receptors (CARs) is an effective method for directing T cells to attack tumors, but may cause adverse side effects such as the potentially lethal cytokine release syndrome. Here the authors show that the T cell antigen coupler (TAC), a chimeric receptor that co-opts the endogenous TCR, induces more efficient anti-tumor responses and reduced toxicity when compared with past-generation CARs. TAC-engineered T cells induce robust and antigen-specific cytokine production and cytotoxicity in vitro, and strong anti-tumor activity in a variety of xenograft models including solid and liquid tumors. In a solid tumor model, TAC-T cells outperform CD28-based CAR-T cells with increased anti-tumor efficacy, reduced toxicity, and faster tumor infiltration. Intratumoral TAC-T cells are enriched for Ki-67+ CD8+ T cells, demonstrating local expansion. These results indicate that TAC-T cells may have a superior therapeutic index relative to CAR-T cells.


Assuntos
Receptores de Antígenos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Proteínas Recombinantes/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Antígenos CD28/imunologia , Linhagem Celular Tumoral , Citocinas/sangue , Citocinas/metabolismo , Citotoxicidade Imunológica , Feminino , Engenharia Genética , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Lentivirus/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Engenharia de Proteínas , Receptor ErbB-2/imunologia , Receptores de Antígenos/genética , Receptores de Antígenos Quiméricos/genética , Anticorpos de Domínio Único , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Linfócitos T Citotóxicos/imunologia , Visão Ocular , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Signal ; 10(475)2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420753

RESUMO

Tumor progression locus 2 (TPL2; also known as MAP3K8) is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that phosphorylates the MAPK kinases MEK1 and MEK2 (MEK1/2), which, in turn, activate the MAPKs extracellular signal-regulated kinase 1 (ERK1) and ERK2 (ERK1/2) in macrophages stimulated through the interleukin-1 receptor (IL-1R), Toll-like receptors (TLRs), or the tumor necrosis factor receptor (TNFR). We describe a conserved and critical role for TPL2 in mediating the effector functions of neutrophils through the activation of the p38 MAPK signaling pathway. Gene expression profiling and functional studies of neutrophils and monocytes revealed a MEK1/2-independent branch point downstream of TPL2 in neutrophils. Biochemical analyses identified the MAPK kinases MEK3 and MEK6 and the MAPKs p38α and p38δ as downstream effectors of TPL2 in these cells. Genetic ablation of the catalytic activity of TPL2 or therapeutic intervention with a TPL2-specific inhibitor reduced the production of inflammatory mediators by neutrophils in response to stimulation with the TLR4 agonist lipopolysaccharide (LPS) in vitro, as well as in rodent models of inflammatory disease. Together, these data suggest that TPL2 is a drug target that activates not only MEK1/2-dependent but also MEK3/6-dependent signaling to promote inflammatory responses.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ativação de Neutrófilo , Neutrófilos/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ativação Enzimática , Inflamação/enzimologia , Inflamação/genética , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , MAP Quinase Quinase Quinases/genética , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA