Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Death Dis ; 15(5): 323, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724507

RESUMO

Richter's syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade B-cell malignancy. Molecular and functional studies have pointed out that CLL cells are close to the apoptotic threshold and dependent on BCL-2 for survival. However, it remains undefined how evasion from apoptosis evolves during disease transformation. Here, we employed functional and static approaches to compare the regulation of mitochondrial apoptosis in CLL and RS. BH3 profiling of 17 CLL and 9 RS samples demonstrated that RS cells had reduced apoptotic priming and lower BCL-2 dependence than CLL cells. While a subset of RS was dependent on alternative anti-apoptotic proteins and was sensitive to specific BH3 mimetics, other RS cases harbored no specific anti-apoptotic addiction. Transcriptomics of paired CLL/RS samples revealed downregulation of pro-apoptotic sensitizers during disease transformation. Albeit expressed, effector and activator members were less likely to colocalize with mitochondria in RS compared to CLL. Electron microscopy highlighted reduced cristae width in RS mitochondria, a condition further promoting apoptosis resistance. Collectively, our data suggest that RS cells evolve multiple mechanisms that lower the apoptotic priming and shift the anti-apoptotic dependencies away from BCL-2, making direct targeting of mitochondrial apoptosis more challenging after disease transformation.


Assuntos
Apoptose , Leucemia Linfocítica Crônica de Células B , Mitocôndrias , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Mitocôndrias/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade
2.
iScience ; 26(11): 108180, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026150

RESUMO

Mutation targeted therapy in cystic fibrosis (CF) is still not eligible for all CF subjects, especially for cases carrying rare variants such as the CFTR genotype W57G/A234D (c.169T>G/c.701C>A). We performed in silico analysis of the effects of these variants on protein stability, which we functionally characterized using colonoids and reprogrammed nasal epithelial cells. The effect of mutations on cystic fibrosis transmembrane conductance regulator (CFTR) protein was analyzed by western blotting, forskolin-induced swelling (FIS), and Ussing chamber analysis. We detected a residual CFTR function that increases following treatment with the CFTR modulators VX661±VX445±VX770, correlates among models, and is associated with increased CFTR protein levels following treatment with CFTR correctors. In vivo treatment with VX770 reduced sweat chloride concentration to non-CF levels, increased the number of CFTR-dependent sweat droplets, and induced a 6% absolute increase in predicted FEV1% after 27 weeks of treatment indicating the relevance of theratyping with patient-derived cells in CF.

3.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373505

RESUMO

Despite the promising results of new CFTR targeting drugs designed for the recovery of F508del- and class III variants activity, none of them have been approved for individuals with selected rare mutations, because uncharacterized CFTR variants lack information associated with the ability of these compounds in recovering their molecular defects. Here we used both rectal organoids (colonoids) and primary nasal brushed cells (hNEC) derived from a CF patient homozygous for A559T (c.1675G>A) variant to evaluate the responsiveness of this pathogenic variant to available CFTR targeted drugs that include VX-770, VX-809, VX-661 and VX-661 combined with VX-445. A559T is a rare mutation, found in African-Americans people with CF (PwCF) with only 85 patients registered in the CFTR2 database. At present, there is no treatment approved by FDA (U.S. Food and Drug Administration) for this genotype. Short-circuit current (Isc) measurements indicate that A559T-CFTR presents a minimal function. The acute addition of VX-770 following CFTR activation by forskolin had no significant increment of baseline level of anion transport in both colonoids and nasal cells. However, the combined treatment, VX-661-VX-445, significantly increases the chloride secretion in A559T-colonoids monolayers and hNEC, reaching approximately 10% of WT-CFTR function. These results were confirmed by forskolin-induced swelling assay and by western blotting in rectal organoids. Overall, our data show a relevant response to VX-661-VX-445 in rectal organoids and hNEC with CFTR genotype A559T/A559T. This could provide a strong rationale for treating patients carrying this variant with VX-661-VX-445-VX-770 combination.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Colforsina/uso terapêutico , Benzodioxóis/farmacologia , Mutação , Organoides , Genótipo
4.
Sci Transl Med ; 14(638): eabl6328, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353541

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP)-elevating agents, such as ß2-adrenergic receptor (ß2-AR) agonists and phosphodiesterase (PDE) inhibitors, remain a mainstay in the treatment of obstructive respiratory diseases, conditions characterized by airway constriction, inflammation, and mucus hypersecretion. However, their clinical use is limited by unwanted side effects because of unrestricted cAMP elevation in the airways and in distant organs. Here, we identified the A-kinase anchoring protein phosphoinositide 3-kinase γ (PI3Kγ) as a critical regulator of a discrete cAMP signaling microdomain activated by ß2-ARs in airway structural and inflammatory cells. Displacement of the PI3Kγ-anchored pool of protein kinase A (PKA) by an inhaled, cell-permeable, PI3Kγ mimetic peptide (PI3Kγ MP) inhibited a pool of subcortical PDE4B and PDE4D and safely increased cAMP in the lungs, leading to airway smooth muscle relaxation and reduced neutrophil infiltration in a murine model of asthma. In human bronchial epithelial cells, PI3Kγ MP induced unexpected cAMP and PKA elevations restricted to the vicinity of the cystic fibrosis transmembrane conductance regulator (CFTR), the ion channel controlling mucus hydration that is mutated in cystic fibrosis (CF). PI3Kγ MP promoted the phosphorylation of wild-type CFTR on serine-737, triggering channel gating, and rescued the function of F508del-CFTR, the most prevalent CF mutant, by enhancing the effects of existing CFTR modulators. These results unveil PI3Kγ as the regulator of a ß2-AR/cAMP microdomain central to smooth muscle contraction, immune cell activation, and epithelial fluid secretion in the airways, suggesting the use of a PI3Kγ MP for compartment-restricted, therapeutic cAMP elevation in chronic obstructive respiratory diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fosfatidilinositol 3-Quinase , Animais , Classe Ib de Fosfatidilinositol 3-Quinase , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Inflamação , Camundongos , Peptídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
5.
Biomolecules ; 12(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053232

RESUMO

Protein tyrosine phosphatase receptor gamma (PTPRG) is known to interact with and regulate several tyrosine kinases, exerting a tumor suppressor role in several type of cancers. Its wide expression in human tissues compared to the other component of group 5 of receptor phosphatases, PTPRZ expressed as a chondroitin sulfate proteoglycan in the central nervous system, has raised interest in its role as a possible regulatory switch of cell signaling processes. Indeed, a carbonic anhydrase-like domain (CAH) and a fibronectin type III domain are present in the N-terminal portion and were found to be associated with its role as [HCO3-] sensor in vascular and renal tissues and a possible interaction domain for cell adhesion, respectively. Studies on PTPRG ligands revealed the contactins family (CNTN) as possible interactors. Furthermore, the correlation of PTPRG phosphatase with inflammatory processes in different normal tissues, including cancer, and the increasing amount of its soluble form (sPTPRG) in plasma, suggest a possible role as inflammatory marker. PTPRG has important roles in human diseases; for example, neuropsychiatric and behavioral disorders and various types of cancer such as colon, ovary, lung, breast, central nervous system, and inflammatory disorders. In this review, we sum up our knowledge regarding the latest discoveries in order to appreciate PTPRG function in the various tissues and diseases, along with an interactome map of its relationship with a group of validated molecular interactors.


Assuntos
Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Biomarcadores/metabolismo , Adesão Celular , Humanos , Especificidade de Órgãos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Supressoras de Tumor/genética
6.
Molecules ; 26(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299623

RESUMO

Oxyresveratrol, a polyphenol extracted from the plant Artocarpus lakoocha Roxb, has been reported to be an antioxidant and an oxygen-free radical scavenger. We investigated whether oxyresveratrol affects the generation of superoxide anion (O2-) by human monocytes, which are powerful reactive oxygen species (ROS) producers. We found that oxyresveratrol inhibited the O2- production induced upon stimulation of monocytes with ß-glucan, a well known fungal immune cell activator. We then investigated whether the inclusion of oxyresveratrol into nanoparticles could modulate its effects on O2- release. We synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on monocytes. We found that empty PLGA nanoparticles induced O2- production by resting monocytes and enhanced the formation of this radical in ß-glucan-stimulated monocytes. Interestingly, the insertion of oxyresveratrol into PLGA nanoparticles significantly inhibited the O2- production elicited by unloaded nanoparticles in resting monocytes as well as the synergistic effect of nanoparticles and ß-glucan. Our results indicate that oxyresveratrol is able to inhibit ROS production by activated monocytes, and its inclusion into PLGA nanoparticles mitigates the oxidative effects due to the interaction between these nanoparticles and resting monocytes. Moreover, oxyresveratrol can contrast the synergistic effects of nanoparticles with fungal agents that could be present in the patient tissues. Therefore, oxyresveratrol is a natural compound able to make PLGA nanoparticles more biocompatible.


Assuntos
Materiais Biocompatíveis/química , Radicais Livres/metabolismo , Monócitos/efeitos dos fármacos , Nanopartículas/química , Oxigênio/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Estilbenos/química , Estilbenos/farmacologia , Antioxidantes/farmacologia , Artocarpus/química , Células Cultivadas , Humanos , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
J Immunol ; 207(2): 671-684, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34162728

RESUMO

The regulatory role of protein tyrosine kinases in ß1- and ß2-integrin activation and in the survival of chronic lymphocytic leukemia (CLL) cells is well established. In contrast, the involvement of protein tyrosine phosphatases in CLL biology was less investigated. We show that selective activation of the protein tyrosine phosphatase receptor type γ (PTPRG) strongly suppresses integrin activation and survival in leukemic B cells isolated from patients with CLL. Activation of PTPRG specifically inhibits CXCR4- as well as BCR-induced triggering of LFA-1 and VLA-4 integrins and mediated rapid adhesion. Triggering of LFA-1 affinity is also prevented by PTPRG activity. Analysis of signaling mechanisms shows that activation of PTPRG blocks chemokine-induced triggering of JAK2 and Bruton's tyrosine kinase protein tyrosine kinases and of the small GTP-binding protein RhoA. Furthermore, activated PTPRG triggers rapid and robust caspase-3/7-mediated apoptosis in CLL cells in a manner quantitatively comparable to the Bruton's tyrosine kinase inhibitor ibrutinib. However, in contrast to ibrutinib, PTPRG-triggered apoptosis is insensitive to prosurvival signals generated by CXCR4 and BCR signaling. Importantly, PTPRG activation does not trigger apoptosis in healthy B lymphocytes. The data show that activated PTPRG inhibits, at once, the signaling pathways controlling adhesion and survival of CLL cells, thus emerging as a negative regulator of CLL pathogenesis. These findings suggest that pharmacological potentiation of PTPRG tyrosine-phosphatase enzymatic activity could represent a novel approach to CLL treatment.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Adesão Celular/fisiologia , Sobrevivência Celular/fisiologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Integrina alfa4beta1/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Antígeno-1 Associado à Função Linfocitária/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
8.
Blood ; 137(24): 3378-3389, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33786583

RESUMO

A small subset of cases of chronic lymphocytic leukemia undergoes transformation to diffuse large B-cell lymphoma, Richter syndrome (RS), which is associated with a poor prognosis. Conventional chemotherapy results in limited responses, underlining the need for novel therapeutic strategies. Here, we investigate the ex vivo and in vivo efficacy of the dual phosphatidylinositol 3-kinase-δ/γ (PI3K-δ/γ) inhibitor duvelisib (Duv) and the Bcl-2 inhibitor venetoclax (Ven) using 4 different RS patient-derived xenograft (PDX) models. Ex vivo exposure of RS cells to Duv, Ven, or their combination results in variable apoptotic responses, in line with the expression levels of target proteins. Although RS1316, IP867/17, and RS9737 cells express PI3K-δ, PI3K-γ, and Bcl-2 and respond to the drugs, RS1050 cells, expressing very low levels of PI3K-γ and lacking Bcl-2, are fully resistant. Moreover, the combination of these drugs is more effective than each agent alone. When tested in vivo, RS1316 and IP867/17 show the best tumor growth inhibition responses, with the Duv/Ven combination leading to complete remission at the end of treatment. The synergistic effect of Duv and Ven relies on the crosstalk between PI3K and apoptotic pathways occurring at the GSK3ß level. Indeed, inhibition of PI3K signaling by Duv results in GSK3ß activation, leading to ubiquitination and subsequent degradation of both c-Myc and Mcl-1, making RS cells more sensitive to Bcl-2 inhibition by Ven. This work provides, for the first time, a proof of concept of the efficacy of dual targeting of PI3K-δ/γ and Bcl-2 in RS and providing an opening for a Duv/Ven combination for these patients. Clinical studies in aggressive lymphomas, including RS, are under way. This trial was registered at www.clinicaltrials.gov as #NCT03892044.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe Ib de Fosfatidilinositol 3-Quinase , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Humanos , Isoquinolinas/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Purinas/farmacologia , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncotarget ; 10(20): 1943-1956, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30956776

RESUMO

Ibrutinib is increasingly adopted for treating lymphoid malignancies. While growing amounts of data pile up about Ibrutinib mechanism of action on neoplastic B cells, little is known about its impact on other immune cells. Here we investigated the effect of Ibrutinib on monocyte/macrophage functions. (1) Ibrutinib treatment of purified human monocytes affected both chemoattractant-triggered inside-out as well as integrin-mediated outside-in signaling events, thus provoking defective adhesion and spreading on purified integrin ligands, respectively. (2) In in vitro cell-culture experiments, Ibrutinib promoted a differentiation shift of monocytes to fibrocyte-like cells, characterized by the acquisition of a typical elongated cell morphology. Importantly, this clear-cut shape transition also occurred upon culturing monocytes with sera derived from Ibrutinib-treated patients, thus clearly suggesting that the drug concentrations achievable in vivo can generate the phenotypic shift. (3) Ibrutinib-induced fibrocyte-like cells showed adhesion deficiency, altered phagocytic properties, and, with respect to macrophages, they acquired the capability of generating larger amounts of reactive oxygen species, possibly displaying different metabolic activities. Taken together, our results indicate that Ibrutinib has profound effects on the monocyte/macrophage immunobiology. They may finally shed some light about the biological ground of several Ibrutinib-related toxicities.

10.
Oncotarget ; 9(80): 35123-35140, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30416684

RESUMO

Bruton's tyrosine kinase (BTK) regulates the B-cell receptor (BCR) signaling pathway, which, in turn, plays a critical role in B-cell chronic lymphocytic leukemia (B-CLL) pathogenesis. The BTK-specific inhibitor Ibrutinib blocks BCR signaling and is now approved as effective B-CLL therapy. Chemokines, such as the homeostatic chemokine CXCL12, play a central role in B-CLL pathogenesis and progression, by regulating CLL cell interaction with the stromal microenvironment, leading to cells survival and proliferation. In this study, we investigated, in normal versus CLL B-lymphocytes, the role of BTK in signal transduction activated by the CXCL12-CXCR4 signaling axis and its involvement in rapid integrin activation. We show that BTK is rapidly activated by CXCL12 in healthy as well as CLL B-lymphocytes, with a kinetic of tyr-phosphorylation coherent with rapid adhesion triggering. BTK inhibition prevents CXCL12-induced triggering of lymphocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) integrins. Furthermore, BTK inhibition blocks the activation of the small GTP-binding protein RhoA, controlling integrin affinity. Very importantly, we show that BTK tyr-phosphorylation and activation by CXCL12 depends on upstream activation of JAK2 tyrosine kinase. A comparative analysis of 36 B-CLL patients demonstrates that JAK2-dependent BTK regulatory role on integrin activation by CXCL12 is fully conserved in CLL cells. Finally, we show that the JAK2-BTK axis also regulates signaling to integrin activation by BCR. Thus, BTK and JAK protein tyrosine kinases (PTKs) manifest a hierarchical activity both in chemokine- as well as BCR-mediated integrin activation and dependent adhesion, potentially suggesting the possibility of combined therapeutic approaches to B-CLL treatment.

11.
Oncotarget ; 9(40): 25877-25890, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29899828

RESUMO

The sesquiterpene α-bisabolol (α-BSB) is a cytotoxic agent against acute leukemia and chronic myeloid leukemia cells. Here the profile of α-BSB citotoxicity was evaluated ex vivo in primary mononuclear blood cells isolated from 45 untreated B-chronic lymphocytic leukemia (B-CLL) patients. We studied the effects of α-BSB by flow cytometric and western blotting techniques with the following findings: (1) α-BSB was an effective proapoptotic agent against B-CLL cells (IC50 42 ± 15 µM). It was also active, but to a lesser extent, on normal residual B cells and monocytes (IC50 68 ± 34 and 74 ± 28 µM, respectively; p < 0.01), while T-cells, though not achieving IC50, were nevertheless decreased. (2) Lipid raft content positively correlated with α-BSB cell sensitivity, while neither the phenotype of B-CLL cells nor the disease clinical stage did affect the sensitivity to α-BSB. (3) Flow cytometry analysis evidenced the induction of pores in mitochondrial and lysosomal membrane after 3- to 5-hour exposure of B-CLL cells to α-BSB, leading to apoptosis; in contrast, western blotting analysis showed inhibition of the autophagic flux. Therefore, according to cellular selectivity, α-BSB is a cytotoxic agent preferentially active against leukemic cells, while its lower activity on normal B cells, monocytes and T cells may account for an additive anti-inflammatory effect targeting the leukemia-associated pro-inflammatory microenvironment. Consistent with the observed effects on intracellular processes, α-BSB should be regarded as a dual agent, both activating mitochondrial-based apoptosis and inhibiting autophagy by disrupting lysosomes.

12.
Blood ; 131(17): 1942-1954, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29467184

RESUMO

B-cell receptor (BCR) signaling is a key determinant of variable clinical behavior and a target for therapeutic interventions in chronic lymphocytic leukemia (CLL). Endogenously produced H2O2 is thought to fine-tune the BCR signaling by reversibly inhibiting phosphatases. However, little is known about how CLL cells sense and respond to such redox cues and what effect they have on CLL. We characterized the response of BCR signaling proteins to exogenous H2O2 in cells from patients with CLL, using phosphospecific flow cytometry. Exogenous H2O2 in the absence of BCR engagement induced a signaling response of BCR proteins that was higher in CLL with favorable prognostic parameters and an indolent clinical course. We identified low catalase expression as a possible mechanism accounting for redox signaling hypersensitivity. Decreased catalase could cause an escalated accumulation of exogenous H2O2 in leukemic cells with a consequent greater inhibition of phosphatases and an increase of redox signaling sensitivity. Moreover, lower levels of catalase were significantly associated with a slower progression of the disease. In leukemic cells characterized by redox hypersensitivity, we also documented an elevated accumulation of ROS and an increased mitochondrial amount. Taken together, our data identified redox sensitivity and metabolic profiles that are linked to differential clinical behavior in CLL. This study advances our understanding of the redox and signaling heterogeneity of CLL and provides the rationale for the development of therapies targeting redox pathways in CLL.


Assuntos
Catalase/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/epidemiologia , Proteínas de Neoplasias/biossíntese , Transdução de Sinais , Adulto , Catalase/genética , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Proteínas de Neoplasias/genética , Oxirredução , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo
13.
Sci Rep ; 7(1): 6555, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747658

RESUMO

Recent data highlight the presence, in HIV-1-seropositive patients with lymphoma, of p17 variants (vp17s) endowed with B-cell clonogenicity, suggesting a role of vp17s in lymphomagenesis. We investigated the mechanisms responsible for the functional disparity on B cells between a wild-type p17 (refp17) and a vp17 named S75X. Here, we show that a single Arginine (R) to Glycine (G) mutation at position 76 in the refp17 backbone (p17R76G), as in the S75X variant, is per se sufficient to confer a B-cell clonogenic potential to the viral protein and modulate, through activation of the PTEN/PI3K/Akt signaling pathway, different molecules involved in apoptosis inhibition (CASP-9, CASP-7, DFF-45, NPM, YWHAZ, Src, PAX2, MAPK8), cell cycle promotion and cancer progression (CDK1, CDK2, CDK8, CHEK1, CHEK2, GSK-3 beta, NPM, PAK1, PP2C-alpha). Moreover, the only R to G mutation at position 76 was found to strongly impact on protein folding and oligomerization by altering the hydrogen bond network. This generates a conformational shift in the p17 R76G mutant which enables a functional epitope(s), masked in refp17, to elicit B-cell growth-promoting signals after its interaction with a still unknown receptor(s). Our findings offer new opportunities to understand the molecular mechanisms accounting for the B-cell growth-promoting activity of vp17s.


Assuntos
Substituição de Aminoácidos , Linfócitos B/patologia , Transformação Celular Neoplásica , Antígenos HIV/genética , Antígenos HIV/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Antígenos HIV/química , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Transdução de Sinais , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
14.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1190-1199, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28286014

RESUMO

BACKGROUND: We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp+) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp+ in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp+ or unconditioned stem cells. METHODS: Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. RESULTS: The proteomic remodeling was largely prevented in MSCp+ group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp+. In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp+. CONCLUSIONS: Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. GENERAL SIGNIFICANCE: Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart.


Assuntos
Fenômenos Biológicos/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Regulação para Baixo/efeitos dos fármacos , Fibrose/metabolismo , Humanos , Cetoácidos/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Patológica/metabolismo , Proteômica/métodos , Suínos , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos
15.
Am J Respir Crit Care Med ; 193(10): 1123-33, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26694899

RESUMO

RATIONALE: Cystic fibrosis (CF) is a common genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Persistent lung inflammation, characterized by increasing polymorphonuclear leukocyte recruitment, is a major cause of the decline in respiratory function in patients with CF and is a leading cause of morbidity and mortality. CFTR is expressed in various cell types, including leukocytes, but its involvement in the regulation of leukocyte recruitment is unknown. OBJECTIVES: We evaluated whether CF leukocytes might present with alterations in cell adhesion and migration, a key process governing innate and acquired immune responses. METHODS: We used ex vivo adhesion and chemotaxis assays, flow cytometry, immunofluorescence, and GTPase activity assays in this study. MEASUREMENTS AND MAIN RESULTS: We found that chemoattractant-induced activation of ß1 and ß2 integrins and of chemotaxis is defective in mononuclear cells isolated from patients with CF. In contrast, polymorphonuclear leukocyte adhesion and chemotaxis were normal. The functionality of ß1 and ß2 integrins was restored by treatment of CF monocytes with the CFTR-correcting drugs VRT325 and VX809. Moreover, treatment of healthy monocytes with the CFTR inhibitor CFTR(inh)-172 blocked integrin activation by chemoattractants. In a murine model of lung inflammation, we found that integrin-independent migration of CF monocytes into the lung parenchyma was normal, whereas, in contrast, integrin-dependent transmigration into the alveolar space was impaired. Finally, signal transduction analysis showed that, in CF monocytes, chemoattractant-triggered activation of RhoA and CDC42 Rho small GTPases (controlling integrin activation and chemotaxis, respectively) was strongly deficient. CONCLUSIONS: Altogether, these data highlight the critical regulatory role of CFTR in integrin activation by chemoattractants in monocytes and identify CF as a new, cell type-selective leukocyte adhesion deficiency disease, providing new insights into CF pathogenesis.


Assuntos
Adesão Celular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Leucócitos/metabolismo , Monócitos/metabolismo , Mutação/genética , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Oncotarget ; 6(33): 34245-57, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26413812

RESUMO

Chemokines participate to B-cell chronic lymphocytic leukemia (B-CLL) pathogenesis by promoting cell adhesion and survival in bone marrow stromal niches and mediating cell dissemination to secondary lymphoid organs. In this study we investigated the role of JAK protein tyrosine kinases (PTK) in adhesion triggering by the CXC chemokine CXCL12 in normal versus CLL B-lymphocytes. We demonstrate that CXCL12 activates JAK2 in normal as well as CLL B-lymphocytes, with kinetics consistent with rapid adhesion triggering. By using complementary methodologies of signal transduction interference, we found that JAK2 mediates CXCL12-triggered activation of lymphocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) integrins. We also show that JAK2 mediates the activation of the small GTP-binding protein RhoA, in turn controlling LFA-1 affinity triggering by CXCL12. Importantly, comparative analysis of 41 B-CLL patients did not evidence JAK2 functional variability between subjects, thus suggesting that JAK2, differently from other signaling events involved in adhesion regulation in B-CLL, is a signaling molecule downstream to CXCR4 characterized by a conserved regulatory role. Our results reveal JAK2 as critical component of chemokine signaling in CLL B-lymphocytes and indicate JAK inhibition as a potentially useful new pharmacological approach to B-CLL treatment.


Assuntos
Quimiocina CXCL12/metabolismo , Integrinas/metabolismo , Janus Quinase 2/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/metabolismo , Western Blotting , Adesão Celular/fisiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno , Transdução de Sinais/fisiologia , Transfecção
17.
J Cell Biol ; 203(6): 1003-19, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24368807

RESUMO

Lymphocyte recruitment is regulated by signaling modules based on the activity of Rho and Rap small guanosine triphosphatases that control integrin activation by chemokines. We show that Janus kinase (JAK) protein tyrosine kinases control chemokine-induced LFA-1- and VLA-4-mediated adhesion as well as human T lymphocyte homing to secondary lymphoid organs. JAK2 and JAK3 isoforms, but not JAK1, mediate CXCL12-induced LFA-1 triggering to a high affinity state. Signal transduction analysis showed that chemokine-induced activation of the Rho module of LFA-1 affinity triggering is dependent on JAK activity, with VAV1 mediating Rho activation by JAKs in a Gαi-independent manner. Furthermore, activation of Rap1A by chemokines is also dependent on JAK2 and JAK3 activity. Importantly, activation of Rap1A by JAKs is mediated by RhoA and PLD1, thus establishing Rap1A as a downstream effector of the Rho module. Thus, JAK tyrosine kinases control integrin activation and dependent lymphocyte trafficking by bridging chemokine receptors to the concurrent and hierarchical activation of the Rho and Rap modules of integrin activation.


Assuntos
Integrinas/fisiologia , Janus Quinases/fisiologia , Linfócitos T/fisiologia , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Adesão Celular , Quimiocina CXCL12/metabolismo , Humanos , Integrina alfa4beta1/metabolismo , Integrina alfa4beta1/fisiologia , Integrinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno-1 Associado à Função Linfocitária/fisiologia , Fosfolipase D/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Proto-Oncogênicas c-vav/fisiologia , Transdução de Sinais , Linfócitos T/metabolismo , Proteínas rap de Ligação ao GTP/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia
18.
J Immunol ; 190(2): 748-55, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23241886

RESUMO

Forkhead box O (FOXO) transcription factors favor both T cell quiescence and trafficking through their control of the expression of genes involved in cell cycle progression, adhesion, and homing. In this article, we report that the product of the fam65b gene is a new transcriptional target of FOXO1 that regulates RhoA activity. We show that family with sequence similarity 65 member b (Fam65b) binds the small GTPase RhoA via a noncanonical domain and represses its activity by decreasing its GTP loading. As a consequence, Fam65b negatively regulates chemokine-induced responses, such as adhesion, morphological polarization, and migration. These results show the existence of a new functional link between FOXO1 and RhoA pathways, through which the FOXO1 target Fam65b tonically dampens chemokine-induced migration by repressing RhoA activity.


Assuntos
Movimento Celular/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas/genética , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Moléculas de Adesão Celular , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Quimiocinas/farmacologia , Proteína Forkhead Box O1 , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Proteínas/metabolismo , Ativação Transcricional
19.
Bioinformatics ; 28(3): 373-80, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22135418

RESUMO

MOTIVATION: Metabolomics is a rapidly evolving field that holds promise to provide insights into genotype-phenotype relationships in cancers, diabetes and other complex diseases. One of the major informatics challenges is providing tools that link metabolite data with other types of high-throughput molecular data (e.g. transcriptomics, proteomics), and incorporate prior knowledge of pathways and molecular interactions. RESULTS: We describe a new, substantially redesigned version of our tool Metscape that allows users to enter experimental data for metabolites, genes and pathways and display them in the context of relevant metabolic networks. Metscape 2 uses an internal relational database that integrates data from KEGG and EHMN databases. The new version of the tool allows users to identify enriched pathways from expression profiling data, build and analyze the networks of genes and metabolites, and visualize changes in the gene/metabolite data. We demonstrate the applications of Metscape to annotate molecular pathways for human and mouse metabolites implicated in the pathogenesis of sepsis-induced acute lung injury, for the analysis of gene expression and metabolite data from pancreatic ductal adenocarcinoma, and for identification of the candidate metabolites involved in cancer and inflammation. AVAILABILITY: Metscape is part of the National Institutes of Health-supported National Center for Integrative Biomedical Informatics (NCIBI) suite of tools, freely available at http://metscape.ncibi.org. It can be downloaded from http://cytoscape.org or installed via Cytoscape plugin manager. CONTACT: metscape-help@umich.edu; akarnovs@umich.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica , Metabolômica , Software , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Humanos , Inflamação/metabolismo , Redes e Vias Metabólicas , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteômica , Sepse/metabolismo
20.
PLoS One ; 6(8): e23674, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858203

RESUMO

BACKGROUND: HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA) with its cell surface receptor (uPAR) has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA). By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles. RESULTS: uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA. CONCLUSIONS: These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed at interfering with the partitioning of virion budding between intra-cytoplasmic vesicles and plasma membrane in infected human macrophages.


Assuntos
Macrófagos/metabolismo , Proteína Quinase C-épsilon/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Vírion/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular , Polaridade Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/ultraestrutura , Vesículas Citoplasmáticas/virologia , Ativação Enzimática/efeitos dos fármacos , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Macrófagos/patologia , Macrófagos/virologia , Microscopia Confocal , Microscopia Eletrônica , Inibidores da Síntese de Ácido Nucleico/farmacologia , Proteína Quinase C-delta/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Células U937 , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Vírion/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA