Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
J Med Chem ; 67(8): 6549-6569, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604131

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.


Assuntos
Inibidores de Proteínas Quinases , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade , Microssomos Hepáticos/metabolismo
2.
Cell ; 187(7): 1666-1684.e26, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490194

RESUMO

Diminished hepatocyte regeneration is a key feature of acute and chronic liver diseases and after extended liver resections, resulting in the inability to maintain or restore a sufficient functional liver mass. Therapies to restore hepatocyte regeneration are lacking, making liver transplantation the only curative option for end-stage liver disease. Here, we report on the structure-based development and characterization (nuclear magnetic resonance [NMR] spectroscopy) of first-in-class small molecule inhibitors of the dual-specificity kinase MKK4 (MKK4i). MKK4i increased liver regeneration upon hepatectomy in murine and porcine models, allowed for survival of pigs in a lethal 85% hepatectomy model, and showed antisteatotic and antifibrotic effects in liver disease mouse models. A first-in-human phase I trial (European Union Drug Regulating Authorities Clinical Trials [EudraCT] 2021-000193-28) with the clinical candidate HRX215 was conducted and revealed excellent safety and pharmacokinetics. Clinical trials to probe HRX215 for prevention/treatment of liver failure after extensive oncological liver resections or after transplantation of small grafts are warranted.


Assuntos
Inibidores Enzimáticos , Falência Hepática , MAP Quinase Quinase 4 , Animais , Humanos , Camundongos , Hepatectomia/métodos , Hepatócitos , Fígado , Hepatopatias/tratamento farmacológico , Falência Hepática/tratamento farmacológico , Falência Hepática/prevenção & controle , Regeneração Hepática , Suínos , MAP Quinase Quinase 4/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico
3.
Nat Commun ; 15(1): 1287, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346946

RESUMO

Fibroblast growth factor receptor (FGFR)-2 can be inhibited by FGFR-selective or non-selective tyrosine kinase inhibitors (TKIs). Selective TKIs are approved for cholangiocarcinoma (CCA) with FGFR2 fusions; however, their application is limited by a characteristic pattern of adverse events or evocation of kinase domain mutations. A comprehensive characterization of a patient cohort treated with the non-selective TKI lenvatinib reveals promising efficacy in FGFR2-driven CCA. In a bed-to-bench approach, we investigate FGFR2 fusion proteins bearing critical tumor-relevant point mutations. These mutations confer growth advantage of tumor cells and increased resistance to selective TKIs but remain intriguingly sensitive to lenvatinib. In line with clinical observations, in-silico analyses reveal a more favorable interaction pattern of lenvatinib with FGFR2, including an increased flexibility and ligand efficacy, compared to FGFR-selective TKIs. Finally, the treatment of a patient with progressive disease and a newly developed kinase mutation during therapy with a selective inhibitor results in a striking response to lenvatinib. Our in vitro, in silico, and clinical data suggest that lenvatinib is a promising treatment option for FGFR2-driven CCA, especially when insurmountable adverse reactions of selective TKIs or acquired kinase mutations occur.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Compostos de Fenilureia , Quinolinas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia
4.
Proc Natl Acad Sci U S A ; 121(9): e2319492121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377196

RESUMO

The Kirsten rat sarcoma viral oncogene homologue KRAS is among the most commonly mutated oncogenes in human cancers, thus representing an attractive target for precision oncology. The approval for clinical use of the first selective inhibitors of G12C mutant KRAS therefore holds great promise for cancer treatment. However, despite initial encouraging clinical results, the overall survival benefit that patients experience following treatment with these inhibitors has been disappointing to date, pointing toward the need to develop more powerful combination therapies. Here, we show that responsiveness to KRASG12C and pan-RAS inhibitors in KRAS-mutant lung and colon cancer cells is limited by feedback activation of the parallel MAP2K4-JNK-JUN pathway. Activation of this pathway leads to elevated expression of receptor tyrosine kinases that reactivate KRAS and its downstream effectors in the presence of drug. We find that the combination of sotorasib, a drug targeting KRASG12C, and the MAP2K4 inhibitor HRX-0233 prevents this feedback activation and is highly synergistic in a panel of KRASG12C-mutant lung and colon cancer cells. Moreover, combining HRX-0233 and sotorasib is well-tolerated and resulted in durable tumor shrinkage in mouse xenografts of human lung cancer cells, suggesting a therapeutic strategy for KRAS-driven cancers.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Medicina de Precisão , Antineoplásicos/farmacologia , Oncogenes , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , MAP Quinase Quinase 4
5.
Eur J Med Chem ; 263: 115935, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989057

RESUMO

A series of hybrid inhibitors, combining pharmacophores of known kinase inhibitors bearing anilino-purines (ruxolitinib, ibrutinib) and benzohydroxamate HDAC inhibitors (nexturastat A), were generated in the present study. The compounds have been synthesized and tested against solid and hematological tumor cell lines. Compounds 4d-f were the most promising in cytotoxicity assays (IC50 ≤ 50 nM) vs. hematological cells and displayed moderate activity in solid tumor models (EC50 = 9.3-21.7 µM). Compound 4d potently inhibited multiple kinase targets of interest for anticancer effects, including JAK2, JAK3, HDAC1, and HDAC6. Molecular dynamics simulations showed that 4d has stable interactions with HDAC and members of the JAK family, with differences in the hinge binding energy conferring selectivity for JAK3 and JAK2 over JAK1. The kinase inhibition profile of compounds 4d-f allows selective cytotoxicity, with minimal effects on non-tumorigenic cells. Moreover, these compounds have favorable pharmacokinetic profiles, with high stability in human liver microsomes (e.g., see t1/2: >120 min for 4f), low intrinsic clearance, and lack of significant inhibition of four major CYP450 isoforms.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Janus Quinases , Purinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
6.
J Med Chem ; 67(1): 2-16, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38134304

RESUMO

Enzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors. We showcase how liquid handling and assay reagents impact kinetic parameters and potency interpretations, which are critical for structure-kinetic relationships and covalent drug design. Additionally, we include benchmark kinetic values with reference inhibitors, which are imperative, as covalent EGFR inhibitor kinetic values are infrequently consistent in the literature. This overview seeks to inform best practices for developing new covalent inhibitors and highlight appropriate steps to address gaps in knowledge presently limiting assay reliability and reproducibility.


Assuntos
Inibidores Enzimáticos , Receptores ErbB , Reprodutibilidade dos Testes , Inibidores Enzimáticos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
7.
Expert Opin Ther Pat ; 33(6): 421-444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501497

RESUMO

INTRODUCTION: The mitogen-activated protein kinase (MAPK) family consist of p38 MAP kinases, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERKs). They are involved in a multitude of diseases, including inflammatory, autoimmune, neurodegenerative, and metabolic diseases as well as cancer. In recent years, further developments in the field of MAPK-inhibitors have been reported, including an isoform or downstream target selective inhibition of MAPKs as well as target protein degradation approaches. AREAS COVERED: This review summarizes newly patented MAPK-inhibitors that were claimed between 2018 and early 2023. Presented are the patents as well as their corresponding publications, the storyline of development, and clinical trials involving these compounds. This article elaborates a total of 27 patents, which were identified using established search engines. EXPERT OPINION: Although industrial research on MAPK-inhibitors has been ongoing for more than 20 years, novel clinical trials of MAPK-inhibitors as potential drug candidates are still being conducted in the period under review. Recently reported inhibitors show an excellent selectivity profile and are even achieving selectivity between closely related isoforms. This progression offers the possibility to eliminate unwanted side effects and may finally lead to the approval of the first MAPK-inhibitor.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Patentes como Assunto , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/farmacologia , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia
8.
Front Immunol ; 14: 1168252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409123

RESUMO

TLR Agonists have promising activity in preclinical models of viral infection and cancer. However, clinical use is only in topical application. Systemic uses of TLR-ligands such as Resiquimod, have failed due to adverse effects that limited dose and thus, efficacy. This issue could be related to pharmacokinetic properties that include fast elimination leading to low AUC with simultaneously high cmax at relevant doses. The high cmax is associated with a sharp, poorly tolerated cytokine pulse, suggesting that a compound with a higher AUC/cmax-ratio could provide a more sustained and tolerable immune activation. Our approach was to design TLR7/8-agonist Imidazoquinolines intended to partition to endosomes via acid trapping using a macrolide-carrier. This can potentially extend pharmacokinetics and simultaneously direct the compounds to the target compartment. The compounds have hTLR7/8-agonist activity (EC50 of the most active compound in cellular assays: 75-120 nM hTLR7, 2.8-3.1 µM hTLR8) and maximal hTLR7 activation between 40 and 80% of Resiquimod. The lead candidates induce secretion of IFNα from human Leukocytes in the same range as Resiquimod but induce at least 10-fold less TNFα in this system, consistent with a higher specificity for human TLR7. This pattern was reproduced in vivo in a murine system, where small molecules are thought not to activate TLR8. We found that Imidazoquinolines conjugated to a macrolide or, substances carrying an unlinked terminal secondary amine, had longer exposure compared with Resiquimod. The kinetics of pro-inflammatory cytokine release for these substances in vivo were slower and more extended (for comparable AUCs, approximately half-maximal plasma concentrations). Maximal IFNα plasma levels were reached 4 h post application. Resiquimod-treated groups had by then returned to baseline from a peak at 1 h. We propose that the characteristic cytokine profile is likely a consequence of altered pharmacokinetics and, potentially, enhanced endosomal tropism of the novel substances. In particular, our substances are designed to partition to cellular compartments where the target receptor and a distinct combination of signaling molecules relevant to IFNα-release are located. These properties could address the tolerability issues of TLR7/8 ligands and provide insight into approaches to fine-tune the outcomes of TLR7/8 activation by small molecules.


Assuntos
Receptor 7 Toll-Like , Fator de Necrose Tumoral alfa , Humanos , Animais , Camundongos , Ligantes , Interferon-alfa , Citocinas , Adjuvantes Imunológicos , Macrolídeos
9.
ACS Pharmacol Transl Sci ; 6(6): 892-906, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37325444

RESUMO

Janus kinase (JAK) inhibitors act at low doses (e.g., tofacitinib, 0.2-0.4 µmol/kg bid) in clinical use, suggesting an efficient underlying mode of action. We hypothesized that their effectiveness is due to their ability to raise the ratio of IL-10 to TNFα. Unlike other JAK isoforms, JAK3 is expressed mainly in hematopoietic cells and is essential for immune function. We used JAK3 selective inhibitors with preferential distribution to immune cells. Inhibition of JAK3 in human leukocytes reduced TNFα and IL-6 but maintained levels of IL-10, while pan-JAK inhibitors increased TNFα, IL-6, and IL-10. JAK1 is required for IL-10 receptor signaling, which suggests that, at exposure above the IC50 (55 nM for tofacitinib on JAK1), there is less feedback control of TNFα levels. This leads to self-limiting effects of JAK1 inhibitors and could place an upper limit on appropriate doses. In vivo, treating mice with JAK3 inhibitors before LPS administration decreased plasma TNFα and increased IL-10 above vehicle levels, suggesting that JAK3 inhibition may limit TNFα release by increasing IL-10 while leaving the IL-10 receptor functional. This mechanism should have general utility in controlling autoimmune diseases and can be conveniently observed by measuring the ratio of IL-10 to TNFα. In summary, our targeted, "leukotropic" inhibitors more effectively increased IL-10/TNFα ratios than unselective control compounds and could, therefore, be ideal for autoimmune therapy.

10.
J Chem Inf Model ; 63(13): 4138-4146, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329322

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infected over 688 million people worldwide, causing public health concern and approximately 6.8 million deaths due to COVID-19. COVID-19, especially severe cases, is characterized by exacerbated lung inflammation with an increase of pro-inflammatory cytokines. In addition to antiviral drugs, there is a need for anti-inflammatory therapies to treat all phases of COVID-19. One of the most attractive drug targets for COVID-19 is the SARS-CoV-2 main protease (MPro), an enzyme responsible for cleaving polyproteins formed after the translation of viral RNA, which is essential for viral replication. MPro inhibitors, therefore, have the potential to stop viral replication and act as antiviral drugs. Considering that several kinase inhibitors are known for their action in inflammatory pathways, this could also be investigated toward a potential anti-inflammatory treatment for COVID-19. Therefore, the use of kinase inhibitors against SARS-CoV-2 MPro may be a promising strategy to find molecules with dual activity─antiviral and anti-inflammatory. Considering this, the potential of six kinase inhibitors against SARS-CoV-2 MPro were evaluated in silico and in vitro, including Baricitinib, Tofacitinib, Ruxolitinib, BIRB-796, Skepinone-L, and Sorafenib. To assess the inhibitory potential of the kinase inhibitors, a continuous fluorescent-based enzyme activity assay was optimized with SARS-CoV-2 MPro and MCA-AVLQSGFR-K(Dnp)-K-NH2 (substrate). BIRB-796 and Baricitinib were identified as inhibitors of SARS-CoV-2 MPro, presenting IC50 values of 7.99 and 25.31 µM, respectively. As they are also known for their anti-inflammatory action, both are prototype compounds with the potential to present antiviral and anti-inflammatory activity against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Anti-Inflamatórios/farmacologia , Simulação de Acoplamento Molecular
11.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37259339

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the development of direct-acting antiviral drugs due to the coronavirus disease 2019 (COVID-19) pandemic. The main protease of SARS-CoV-2 is a crucial enzyme that breaks down polyproteins synthesized from the viral RNA, making it a validated target for the development of SARS-CoV-2 therapeutics. New chemical phenotypes are frequently discovered in natural goods. In the current study, we used a fluorogenic assay to test a variety of natural products for their ability to inhibit SARS-CoV-2 Mpro. Several compounds were discovered to inhibit Mpro at low micromolar concentrations. It was possible to crystallize robinetin together with SARS-CoV-2 Mpro, and the X-ray structure revealed covalent interaction with the protease's catalytic Cys145 site. Selected potent molecules also exhibited antiviral properties without cytotoxicity. Some of these powerful inhibitors might be utilized as lead compounds for future COVID-19 research.

12.
J Med Chem ; 66(11): 7304-7330, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37226670

RESUMO

The ATM kinase is a promising target in cancer treatment as an important regulator of the cellular response to DNA double-strand breaks. In this work, we present a new class of specific benzimidazole-based ATM inhibitors with picomolar potency against the isolated enzyme and favorable selectivity within relative PIKK and PI3K kinases. We could identify two promising inhibitor subgroups with significantly different physicochemical properties, which we developed simultaneously. These efforts lead to numerous highly active inhibitors with picomolar enzymatic activities. Furthermore, initial low cellular activities on A549 cells could be increased significantly in numerous examples resulting in cellular IC50 values in the subnanomolar range. Further characterization of the highly potent inhibitors 90 und 93 revealed promising pharmacokinetic properties and strong activities in organoids in combination with etoposide. Additionally, 93 showed no off-target activities within a kinome-representative mini kinase panel, with favorable selectivities within the PIKK- and PI3K-families.


Assuntos
Benzimidazóis , Piridinas , Humanos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Etoposídeo , Piridinas/farmacologia , Benzimidazóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Mutadas de Ataxia Telangiectasia
13.
Methods Enzymol ; 685: 171-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245901

RESUMO

Specificity for a desired enzyme target is an essential property of small-molecule inhibitors. Molecules targeting oncogenic driver mutations in the epidermal growth factor receptor (EGFR) kinase domain have had a considerable clinical impact due to their selective binding to cancer-causing mutants compared to wild type. Despite the availability of clinically approved drugs for cancers driven by EGFR mutants, persistent challenges in drug resistance in the past decades have led to newer generations of drugs with divergent chemical structures. The current clinical challenges are mainly due to acquired resistance to third-generation inhibitors, including by the acquisition of the C797S mutation. Several diverse fourth-generation candidates and tool compounds that inhibit the C797S mutant have emerged, and their structural characterization has revealed molecular factors that allow for EGFR mutant selective binding. Here, we have reviewed all known structurally-characterized EGFR TKIs targeting clinically-relevant mutations to identify specific features that enable C797S inhibition. Newer generation EGFR inhibitors exhibit consistent and previously underutilized hydrogen bonding interactions with the conserved K745 and D855 residue side chains. We also consider binding modes and hydrogen bonding interactions of inhibitors targeting the classical ATP and the more unique allosteric sites.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Mutação
14.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108658

RESUMO

MKK4 (mitogen-activated protein kinase kinase 4; also referred to as MEK4) is a dual-specificity protein kinase that phosphorylates and regulates both JNK (c-Jun N-terminal kinase) and p38 MAPK (p38 mitogen-activated protein kinase) signaling pathways and therefore has a great impact on cell proliferation, differentiation and apoptosis. Overexpression of MKK4 has been associated with aggressive cancer types, including metastatic prostate and ovarian cancer and triple-negative breast cancer. In addition, MKK4 has been identified as a key regulator in liver regeneration. Therefore, MKK4 is a promising target both for cancer therapeutics and for the treatment of liver-associated diseases, offering an alternative to liver transplantation. The recent reports on new inhibitors, as well as the formation of a startup company investigating an inhibitor in clinical trials, show the importance and interest of MKK4 in drug discovery. In this review, we highlight the significance of MKK4 in cancer development and other diseases, as well as its unique role in liver regeneration. Furthermore, we present the most recent progress in MKK4 drug discovery and future challenges in the development of MKK4-targeting drugs.


Assuntos
Neoplasias Ovarianas , Proteínas Quinases p38 Ativadas por Mitógeno , Feminino , Humanos , Masculino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação
15.
Inflammopharmacology ; 31(3): 1223-1239, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004600

RESUMO

Dimethyl fumarate (DMF) is approved as a treatment for multiple sclerosis (MS), however, its mode of action remains unclear. One hypothesis proposes that Michael addition to thiols by DMF, notably glutathione is immunomodulatory. The alternative proposes that monomethyl fumarate (MMF), the hydrolysis product of DMF, is a ligand to the fatty acid receptor GPR109A found in the lysosomes of immune cells. We prepared esters of MMF and macrolides derived from azithromycin, which were tropic to immune cells by virtue of lysosomal trapping. We tested the effects of these substances in an assay of response to Lipopolysaccharide (LPS) in freshly isolated human peripheral blood mononuclear cells (PBMCs). In this system, we observed that the 4'' ester of MMF (compound 2 and 3) reduced levels of Interleukins (IL)-1ß, IL-12 and tumor necrosis factor alpha (TNFα) significantly at a concentration of 1 µM, while DMF required about 25 µM for the same effect. The 2' esters of MMF (compound 1 and 2) were, like MMF itself, inactive in vitro. The 4'' ester formed glutathione conjugates rapidly while the 2' conjugates did not react with thiols but did hydrolyze slowly to release MMF in these cells. We then tested the substances in vivo using the imiquimod/isostearate model of psoriasis where the 2' ester was the most active at 0.06-0.12 mg/kg (approximately 0.1 µmol/kg), improving skin score, body weight and cytokine levels (TNFα, IL-17A, IL-17F, IL-6, IL-1ß, NLRP3 and IL-23A). In contrast, the thiol reactive 4'' ester was less active than the 2' ester while DMF was ca. 300-fold less active. The thiol reactive 4'' ester was not easily recovered from either plasma or organs while the 2' ester exhibited conventional uptake and elimination. The 2' ester also reduced levels of IL-6 in acute monosodium urate (MSU) induced inflammation. These data suggest that mechanisms that are relevant in vivo center on the release of MMF. Given that GPR109A is localized to the lysosome, and that lysosomal trapping increases 2' ester activity by > 300 fold, these data suggest that GPR109A may be the main target in vivo. In contrast, the effects associated with glutathione (GSH) conjugation in vitro are unlikely to be as effective in vivo due to the much lower dose in use which cannot titrate the more concentrated thiols. These data support the case for GPR109A modulation in autoimmune diseases.


Assuntos
Ésteres , Leucócitos Mononucleares , Humanos , Ésteres/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa , Fumarato de Dimetilo/farmacologia , Glutationa
16.
Inflammopharmacology ; 31(2): 799-812, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36943539

RESUMO

Topical imiquimod based creams are indicated as immune stimulants for papillomas and various skin neoplasms. Imiquimod is considered a TLR7 ligand. These creams are also used in research to induce skin inflammation in mice as a model for psoriasis. We observed that this inflammatory response was not strictly imiquimod dependent and we set out to establish which components drive the proinflammatory effects. To this end, we examined the induction response in a BALB/cJRj mouse model, in which 50 mg of cream is applied to 2 cm2 of skin (125 mg/kg imiquimod-5% W/V, and/or 625 mg/kg isostearic acid-25% W/V). Comparing cream formulations containing isostearic acid, imiquimod and the combination, we observed that isostearic acid causes skin inflammation within 2 days, whereas imiquimod requires up to 5 days for initial signs. Isostearic acid activated an inflammasome response, stimulated release of proinflammatory cytokines and upregulated the IL-23/17 axis. Animals treated with isostearic acid had enlarged livers (+ 40% weight), which was not observed with imiquimod alone. Imiquimod was readily metabolized and cleared from plasma and liver, but was maintained at high levels in the skin throughout the body (200 mM at area of application; 200 µM in untreated skin). Imiquimod application was associated with splenomegaly, cytokine induction/release and initial body weight loss over 3 days. Despite high imiquimod skin levels throughout the animal, inflammation was only apparent in the treated areas and was less severe than in isostearic acid groups. As the concentrations in these areas are well above the 10 µM required for TLR7 responses in vitro, there is an implication that skin inflammation following imiquimod is due to effects other than TLR7 agonism (e.g., adenosine receptor agonism). In brain, isostearic caused no major changes in cytokine expression while imiquimod alone sightly stimulated expression of IL-1ß and CCL9. However, the combination of both caused brain induction of CCL3, -9, CXCL10, -13, IL-1ß and TNFα. The implication of these data is that isostearic acid facilitates the entry of imiquimod or peripherally secreted cytokines into the brain. Our data suggest that psoriaform skin responses in mice are more driven by isostearic acid, than generally reported and that the dose and route used in the model, leads to profound systemic effects, which may complicate the interpretation of drug effects in this model.


Assuntos
Dermatite , Receptor 7 Toll-Like , Animais , Camundongos , Imiquimode/metabolismo , Receptor 7 Toll-Like/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Dermatite/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
18.
ACS Med Chem Lett ; 13(12): 1856-1863, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36518696

RESUMO

Lazertinib (YH25448) is a novel third-generation tyrosine kinase inhibitor (TKI) developed as a treatment for EGFR mutant non-small cell lung cancer. To better understand the nature of lazertinib inhibition, we determined crystal structures of lazertinib in complex with both WT and mutant EGFR and compared its binding mode to that of structurally related EGFR TKIs. We observe that lazertinib binds EGFR with a distinctive pyrazole moiety enabling hydrogen bonds and van der Waals interactions facilitated through hydrophilic amine and hydrophobic phenyl groups, respectively. Biochemical assays and cell studies confirm that lazertinib effectively targets EGFR(L858R/T790M) and to a lesser extent HER2. The molecular basis for lazertinib inhibition of EGFR reported here highlights previously unexplored binding interactions leading to improved medicinal chemistry properties compared to clinically approved osimertinib (AZD9291) and offers novel strategies for structure-guided design of tyrosine kinase inhibitors.

19.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555275

RESUMO

Gastrointestinal diseases, such as peptic ulcers, are caused by a damage in the gastric mucosa provoked by several factors. This stomach injury is regulated by many inflammatory mediators and is commonly treated with proton-pump inhibitors, histamine H2 receptor blockers and antacids. However, various medicinal plants have demonstrated positive effects on gastric ulcer treatment, including plants of the Ceiba genus. The aim of this study was to evaluate the antiulcer and anti-inflammatory activities of the stem bark ethanolic extract of Ceiba speciosa (A. St.-Hil.) Ravenna. We performed a preliminary quantification of phenolic compounds by high-performance liquid chromatography-diode array detection (HPLC-DAD), followed by the prospection of other chemical groups through nuclear magnetic resonance (NMR) spectroscopy. A set of in vitro assays was used to evaluate the extract potential regarding its antioxidant activity (DPPH: 19.83 ± 0.34 µg/mL; TPC: 307.20 ± 6.20 mg GAE/g of extract), effects on cell viability and on the release of TNF-α in whole human blood. Additionally, in vivo assays were performed to evaluate the leukocyte accumulation and total protein quantification in carrageenan-induced air pouch, as well as the antiulcerogenic effect of the extract on an ethanol-induced ulcer in rats. The extract contains flavonoids and phenolic compounds, as well as sugars and quinic acid derivatives exhibiting potent antioxidant activity and low toxicity. The extract reduced the release of TNF-α in human blood and inhibited the activity of p38α (1.66 µg/mL), JAK3 (5.25 µg/mL), and JNK3 (8.34 µg/mL). Moreover, it reduced the leukocyte recruitment on the pouch exudate and the formation of edema, reverting the effects caused by carrageenan. The extract presented a significant prevention of ulcer formation and a higher reduction than the reference drug, Omeprazole. Therefore, C. speciosa extract has demonstrated relevant therapeutic potential for the treatment of gastric diseases, deserving the continuation of further studies to unveil the mechanisms of action of plant bioactive ingredients.


Assuntos
Antiulcerosos , Ceiba , Extratos Vegetais , Úlcera Gástrica , Animais , Humanos , Ratos , Antiulcerosos/farmacologia , Antioxidantes/farmacologia , Carragenina/efeitos adversos , Ceiba/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Úlcera
20.
J Nanobiotechnology ; 20(1): 540, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575530

RESUMO

BACKGROUND: In vivo-mimicking conditions are critical in in vitro cell analysis to obtain clinically relevant results. The required conditions, comparable to those prevalent in nature, can be provided by microfluidic dynamic cell cultures. Microfluidics can be used to fabricate and test the functionality and biocompatibility of newly developed nanosystems or to apply micro- and nanoelectromechanical systems embedded in a microfluidic system. However, the use of microfluidic systems is often hampered by their accessibility, acquisition cost, or customization, especially for scientists whose primary research focus is not microfluidics. RESULTS: Here we present a method for 3D printing that can be applied without special prior knowledge and sophisticated equipment to produce various ready-to-use microfluidic components with a size of 100 µm. Compared to other available methods, 3D printing using fused deposition modeling (FDM) offers several advantages, such as time-reduction and avoidance of sophisticated equipment (e.g., photolithography), as well as excellent biocompatibility and avoidance of toxic, leaching chemicals or post-processing (e.g., stereolithography). We further demonstrate the ease of use of the method for two relevant applications: a cytotoxicity screening system and an osteoblastic differentiation assay. To our knowledge, this is the first time an application including treatment, long-term cell culture and analysis on one chip has been demonstrated in a directly 3D-printed microfluidic chip. CONCLUSION: The direct 3D printing method is tested and validated for various microfluidic components that can be combined on a chip depending on the specific requirements of the experiment. The ease of use and production opens up the potential of microfluidics to a wide range of users, especially in biomedical research. Our demonstration of its use as a cytotoxicity screening system and as an assay for osteoblastic differentiation shows the methods potential in the development of novel biomedical applications. With the presented method, we aim to disseminate microfluidics as a standard method in biomedical research, thus improving the reproducibility and transferability of results to clinical applications.


Assuntos
Células-Tronco Mesenquimais , Microfluídica , Impressão Tridimensional , Humanos , Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA