Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cureus ; 16(6): e62906, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39040774

RESUMO

Stereotactic body radiotherapy (SBRT) to the central and ultra-central thorax is associated with infrequent but potentially serious adverse events. Adaptive SBRT, which provides more precise treatment planning and inter-fraction motion management, may allow the delivery of ablative doses to ultra-central tumors with effective local control and improved toxicity profiles. Herein, we describe the first reported case of cone beam computed tomography (CBCT)-guided stereotactic adaptive radiotherapy (CT-STAR) in the treatment of ultra-central non-small cell lung cancer (NSCLC) in a prospective clinical trial (NCT05785845). An 80-year-old man with radiographically diagnosed early-stage NSCLC presented for definitive management of an enlarging ultra-central lung nodule. He was prescribed 55 Gy in five fractions with CT-STAR. A simulation was performed using four-dimensional CT, and patients were planned for treatment at end-exhale breath-hold. Treatment plans were generated using a strict isotoxicity approach, which prioritized organ at risk (OAR) constraints over target coverage. During treatment, daily CBCTs were acquired and used to generate adapted contours and treatment plans based on the patient's anatomy-of-the-day, all while the patient was on the treatment table. The initial and adapted plans were compared using dose-volume histograms, and the superior plan was selected for treatment. The adapted plan was deemed superior and used for treatment in three out of five fractions. The adapted plan provided improved target coverage in two fractions and resolved an OAR hard constraint violation in one fraction. We report the successful treatment of a patient with ultra-central NSCLC utilizing CT-STAR. This case report builds on previously published in silico data to support the viability and dosimetric advantages of CT-STAR in the ablative treatment of this challenging tumor location. Further data are needed to confirm the toxicity and efficacy of this technique.

2.
J Appl Clin Med Phys ; 25(5): e14337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38576183

RESUMO

PURPOSE: The quality of on-board imaging systems, including cone-beam computed tomography (CBCT), plays a vital role in image-guided radiation therapy (IGRT) and adaptive radiotherapy. Recently, there has been an upgrade of the CBCT systems fused in the O-ring linear accelerators called HyperSight, featuring a high imaging performance. As the characterization of a new imaging system is essential, we evaluated the image quality of the HyperSight system by comparing it with Halcyon 3.0 CBCT and providing benchmark data for routine imaging quality assurance. METHODS: The HyperSight features ultra-fast scan time, a larger kilovoltage (kV) detector, a more substantial kV tube, and an advanced reconstruction algorithm. Imaging protocols in the two modes of operation, treatment mode with IGRT and the CBCT for planning (CBCTp) mode were evaluated and compared with Halcyon 3.0 CBCT. Image quality metrics, including spatial resolution, contrast resolution, uniformity, noise, computed tomography (CT) number linearity, and calibration error, were assessed using a Catphan and an electron density phantom and analyzed with TotalQA software. RESULTS: HyperSight demonstrated substantial improvements in contrast-to-noise ratio and noise in both IGRT and CBCTp modes compared to Halcyon 3.0 CBCT. CT number calibration error of HyperSight CBCTp mode (1.06%) closely matches that of a full CT scanner (0.72%), making it suitable for adaptive planning. In addition, the advanced hardware of HyperSight, such as ultra-fast scan time (5.9 s) or 2.5 times larger heat unit capacity, enhanced the clinical efficiency in our experience. CONCLUSIONS: HyperSight represented a significant advancement in CBCT imaging. With its image quality, CT number accuracy, and ultra-fast scans, HyperSight has a potential to transform patient care and treatment outcomes. The enhanced scan speed and image quality of HyperSight are expected to significantly improve the quality and efficiency of treatment, particularly benefiting patients.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Aceleradores de Partículas/instrumentação , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
3.
Int J Radiat Oncol Biol Phys ; 119(5): 1422-1428, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580083

RESUMO

PURPOSE: We aimed to demonstrate the clinical feasibility and safety of simulation-free hippocampal avoidance whole brain radiation therapy (HA-WBRT) in a pilot study (National Clinical Trial 05096286). METHODS AND MATERIALS: Ten HA-WBRT candidates were enrolled for treatment on a commercially available computed tomography (CT)-guided linear accelerator with online adaptive capabilities. Planning structures were contoured on patient-specific diagnostic magnetic resonance imaging (MRI), which were registered to a CT of similar head shape, obtained from an atlas-based database (AB-CT). These patient-specific diagnostic MRI and AB-CT data sets were used for preplan calculation, using NRG-CC001 constraints. At first fraction, AB-CTs were used as primary data sets and deformed to patient-specific cone beam CTs (CBCT) to give patient-matched density information. Brain, ventricle, and brain stem contours were matched through rigid translation and rotation to the corresponding anatomy on CBCT. Lens, optic nerve, and brain contours were manually edited based on CBCT visualization. Preplans were then reoptimized through online adaptation to create final, simulation-free plans, which were used if they met all objectives. Workflow tasks were timed. In addition, patients underwent CT-simulation to create immobilization devices and for prospective dosimetric comparison of simulation-free and simulation-based plans. RESULTS: Median time from MRI importation to completion of "preplan" was 1 weekday (range, 1-4). Median on-table workflow duration was 41 minutes (range, 34-70). NRG-CC001 constraints were achieved by 90% of the simulation-free plans. One patient's simulation-free plan failed a planning target volume coverage objective (89% instead of 90% coverage); this was deemed acceptable for first-fraction delivery, with an offline replan used for subsequent fractions. Both simulation-free and simulation CT-based plans otherwise met constraints, without clinically meaningful differences. CONCLUSIONS: Simulation-free HA-WBRT using online adaptive radiation therapy is feasible, safe, and results in dosimetrically comparable treatment plans to simulation CT-based workflows while providing convenience and time savings for patients.


Assuntos
Neoplasias Encefálicas , Tomografia Computadorizada de Feixe Cônico , Irradiação Craniana , Estudos de Viabilidade , Hipocampo , Imageamento por Ressonância Magnética , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Projetos Piloto , Planejamento da Radioterapia Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Irradiação Craniana/métodos , Órgãos em Risco/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Radioterapia Guiada por Imagem/métodos , Tratamentos com Preservação do Órgão/métodos , Masculino
4.
Artigo em Inglês | MEDLINE | ID: mdl-38495830

RESUMO

We successfully implemented an APRT specializing in CBCT-guided online adaptive contouring. These data show statistical improvements in contouring time with APRT-led vs non-APRT led ART contouring, suggesting that an APRT specifically trained to manage the ART process may reduce physician workload and patient treatment time.

5.
J Appl Clin Med Phys ; 25(4): e14242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178622

RESUMO

PURPOSE: High-quality CBCT and AI-enhanced adaptive planning techniques allow CBCT-guided stereotactic adaptive radiotherapy (CT-STAR) to account for inter-fractional anatomic changes. Studies of intra-fractional respiratory motion management with a surface imaging solution for CT-STAR have not been fully conducted. We investigated intra-fractional motion management in breath-hold Ethos-based CT-STAR and CT-SBRT (stereotactic body non-adaptive radiotherapy) using optical surface imaging combined with onboard CBCTs. METHODS: Ten cancer patients with mobile lower lung or upper abdominal malignancies participated in an IRB-approved clinical trial (Phase I) of optical surface image-guided Ethos CT-STAR/SBRT. In the clinical trial, a pre-configured gating window (± 2 mm in AP direction) on optical surface imaging was used for manually triggering intra-fractional CBCT acquisition and treatment beam irradiation during breath-hold (seven patients for the end of exhalation and three patients for the end of inhalation). Two inter-fractional CBCTs at the ends of exhalation and inhalation in each fraction were acquired to verify the primary direction and range of the tumor/imaging-surrogate (donut-shaped fiducial) motion. Intra-fractional CBCTs were used to quantify the residual motion of the tumor/imaging-surrogate within the pre-configured breath-hold window in the AP direction. Fifty fractions of Ethos RT were delivered under surface image-guidance: Thirty-two fractions with CT-STAR (adaptive RT) and 18 fractions with CT-SBRT (non-adaptive RT). The residual motion of the tumor was quantified by determining variations in the tumor centroid position. The dosimetric impact on target coverage was calculated based on the residual motion. RESULTS: We used 46 fractions for the analysis of intra-fractional residual motion and 43 fractions for the inter-fractional motion analysis due to study constraints. Using the image registration method, 43 pairs of inter-fractional CBCTs and 100 intra-fractional CBCTs attached to dose maps were analyzed. In the motion range study (image registration) from the inter-fractional CBCTs, the primary motion (mean ± std) was 16.6 ± 9.2 mm in the SI direction (magnitude: 26.4 ± 11.3 mm) for the tumors and 15.5 ± 7.3 mm in the AP direction (magnitude: 20.4 ± 7.0 mm) for the imaging-surrogate, respectively. The residual motion of the tumor (image registration) from intra-fractional breath-hold CBCTs was 2.2 ± 2.0 mm for SI, 1.4 ± 1.4 mm for RL, and 1.3 ± 1.3 mm for AP directions (magnitude: 3.5 ± 2.1 mm). The ratio of the actual dose coverage to 99%, 90%, and 50% of the target volume decreased by 0.95 ± 0.11, 0.96 ± 0.10, 0.99 ± 0.05, respectively. The mean percentage of the target volume covered by the prescribed dose decreased by 2.8 ± 4.4%. CONCLUSION: We demonstrated the intra-fractional motion-managed treatment strategy in breath-hold Ethos CT-STAR/SBRT using optical surface imaging and CBCT. While the controlled residual tumor motion measured at 3.5 mm exceeded the predetermined setup value of 2 mm, it is important to note that this motion still fell within the clinically acceptable range defined by the PTV margin of 5 mm. Nonetheless, additional caution is needed with intra-fractional motion management in breath-hold Ethos CT-STAR/SBRT using optical surface imaging and CBCT.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Suspensão da Respiração , Tomografia Computadorizada de Feixe Cônico/métodos , Estudos de Viabilidade , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA