Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34027891

RESUMO

Individuals with heart failure (HF) frequently present with comorbidities, including obesity, insulin resistance, hypertension, and dyslipidemia. Many patients with HF experience cardiogenic dementia, yet the pathophysiology of this disease remains poorly understood. Using a swine model of cardiometabolic HF (Western diet+aortic banding; WD-AB), we tested the hypothesis that WD-AB would promote a multidementia phenotype involving cerebrovascular dysfunction alongside evidence of Alzheimer's disease (AD) pathology. The results provide evidence of cerebrovascular insufficiency coupled with neuroinflammation and amyloidosis in swine with experimental cardiometabolic HF. Although cardiac ejection fraction was normal, indices of arterial compliance and cerebral blood flow were reduced, and cerebrovascular regulation was impaired in the WD-AB group. Cerebrovascular dysfunction occurred concomitantly with increased MAPK signaling and amyloidogenic processing (i.e., increased APP, BACE1, CTF, and Aß40 in the prefrontal cortex and hippocampus) in the WD-AB group. Transcriptomic profiles of the stellate ganglia revealed the WD-AB group displayed an enrichment of gene networks associated with MAPK/ERK signaling, AD, frontotemporal dementia, and a number of behavioral phenotypes implicated in cognitive impairment. These provide potentially novel evidence from a swine model that cerebrovascular and neuronal pathologies likely both contribute to the dementia profile in a setting of cardiometabolic HF.


Assuntos
Amiloide/metabolismo , Transtornos Cerebrovasculares , Insuficiência Cardíaca , Doenças Metabólicas , Animais , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Transdução de Sinais , Suínos
2.
Microcirculation ; 26(6): e12539, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30821858

RESUMO

OBJECTIVE: Swine with familial hypercholesterolemia (FH) exhibit attenuated exercise-induced systemic vasodilation that is restored by phosphodiesterase 5 (PDE5) inhibition. Whether the impacts of FH and PDE5 inhibition to impair and restore exercise-induced vasodilation, respectively, results from tissue-specific or generalized effects remains unclear. Thus, we hypothesized that FH induces generalized impairment of skeletal muscle vasodilation that would be alleviated by PDE5 inhibition. METHODS: Systemic vascular responses to exercise were assessed in chronically instrumented normal and FH swine before and after PDE5 inhibition with EMD360527. Skeletal muscle and organ blood flows and conductances were determined via the microsphere technique. RESULTS: As previously reported, vs normal swine, FH swine have pronounced elevation of total cholesterol and impaired exercise-induced vasodilation that is restored by PDE5 inhibition. Blood flows to several, not all, skeletal muscle vascular beds were severely impaired by FH associated with reduced blood flow to many visceral organs. PDE5 inhibition differentially impacted skeletal muscle and organ blood flows in normal and FH swine. CONCLUSIONS: These data indicate that FH induces regional, not generalized, vasomotor dysfunction and that FH and normal swine exhibit unique tissue blood flow responses to PDE5 inhibition thereby adding to accumulating evidence of vascular bed-specific dysfunction in co-morbid conditions.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Hiperlipoproteinemia Tipo II , Músculo Esquelético , Inibidores da Fosfodiesterase 5/farmacologia , Condicionamento Físico Animal , Vasodilatação/efeitos dos fármacos , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Hiperlipoproteinemia Tipo II/enzimologia , Hiperlipoproteinemia Tipo II/patologia , Hiperlipoproteinemia Tipo II/fisiopatologia , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Suínos
3.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R252-R264, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141949

RESUMO

Impaired microvascular insulin signaling may develop before overt indices of microvascular endothelial dysfunction and represent an early pathological feature of adolescent obesity. Using a translational porcine model of juvenile obesity, we tested the hypotheses that in the early stages of obesity development, impaired insulin signaling manifests in skeletal muscle (triceps), brain (prefrontal cortex), and corresponding vasculatures, and that depressed insulin-induced vasodilation is reversible with acute inhibition of protein kinase Cß (PKCß). Juvenile Ossabaw miniature swine (3.5 mo of age) were divided into two groups: lean control ( n = 6) and obese ( n = 6). Obesity was induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 10 wk. Juvenile obesity was characterized by excess body mass, hyperglycemia, physical inactivity (accelerometer), and marked lipid accumulation in the skeletal muscle, with no evidence of overt atherosclerotic lesions in athero-prone regions, such as the abdominal aorta. Endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) vasomotor responses in the brachial and carotid arteries (wire myography), as well as in the skeletal muscle resistance and 2A pial arterioles (pressure myography) were unaltered, but insulin-induced microvascular vasodilation was impaired in the obese group. Blunted insulin-stimulated vasodilation, which was reversed with acute PKCß inhibition (LY333-531), occurred alongside decreased tissue perfusion, as well as reduced insulin-stimulated Akt signaling in the prefrontal cortex, but not the triceps. In the early stages of juvenile obesity development, the microvasculature and prefrontal cortex exhibit impaired insulin signaling. Such adaptations may underscore vascular and neurological derangements associated with juvenile obesity.


Assuntos
Resistência à Insulina , Insulina/sangue , Microvasos/metabolismo , Músculo Esquelético/irrigação sanguínea , Obesidade Infantil/metabolismo , Córtex Pré-Frontal/irrigação sanguínea , Vasodilatação , Fatores Etários , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Obesidade Infantil/fisiopatologia , Fosforilação , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C beta/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos , Porco Miniatura , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
4.
J Appl Physiol (1985) ; 122(4): 1040-1050, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183819

RESUMO

This study tested the hypotheses that obesity-induced decrements in insulin-stimulated cerebrovascular vasodilation would be normalized with acute endothelin-1a receptor antagonism and that treatment with a physical activity intervention restores vasoreactivity to insulin through augmented nitric oxide synthase (NOS)-dependent dilation. Otsuka Long-Evans Tokushima Fatty rats were divided into the following groups: 20 wk old food controlled (CON-20); 20 wk old free food access (model of obesity, OB-20); 40 wk old food controlled (CON-40); 40 wk old free food access (OB-40); and 40 wk old free food access+RUN (RUN-40; wheel-running access from 20 to 40 wk). Rats underwent Barnes maze testing and a euglycemic hyperinsulinemic clamp (EHC). In the 40-wk cohort, cerebellum and hippocampus blood flow (BF) were examined (microsphere infusion). Vasomotor responses (pressurized myography) to insulin were assessed in untreated, endothelin-1a receptor antagonism, and NOS inhibition conditions in posterior cerebral arteries. Insulin-stimulated vasodilation was attenuated in the OB vs. CON and RUN groups (P ≤ 0.04). Dilation to insulin was normalized with endothelin-1a receptor antagonism in the OB groups (between groups, P ≥ 0.56), and insulin-stimulated NOS-mediated dilation was greater in the RUN-40 vs. OB-40 group (P < 0.01). At 40 wk of age, cerebellum BF decreased during EHC in the OB-40 group (P = 0.02) but not CON or RUN groups (P ≥ 0.36). Barnes maze testing revealed increased entry errors and latencies in the RUN-40 vs. CON and OB groups (P < 0.01). These findings indicate that obesity-induced impairments in vasoreactivity to insulin involve increased endothelin-1 and decreased nitric oxide signaling. Chronic spontaneous physical activity, initiated after disease onset, reversed impaired vasodilation to insulin and decreased Barnes maze performance, possibly because of increased exploratory behavior.NEW & NOTEWORTHY The new and noteworthy findings are that 1) in rodents, obesity-related deficits in insulin-mediated vasodilation are associated with increased influence of insulin-stimulated ET-1 and depressed influence of insulin-stimulated NOS and 2) a physical activity intervention, initiated after the onset of disease, restores insulin-mediated vasodilation, likely by normalizing insulin-stimulated ET-1 and NOS balance. These data demonstrate that the treatment effects of chronic exercise on insulin-mediated vasodilation extend beyond active skeletal muscle vasculature and include the cerebrovasculature.


Assuntos
Endotelina-1/metabolismo , Insulina/farmacologia , Óxido Nítrico/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Artéria Cerebral Posterior/metabolismo , Animais , Resistência à Insulina/fisiologia , Obesidade/terapia , Condicionamento Físico Animal/métodos , Artéria Cerebral Posterior/efeitos dos fármacos , Ratos , Ratos Endogâmicos OLETF , Resultado do Tratamento , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
5.
J Appl Physiol (1985) ; 122(3): 423-429, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909230

RESUMO

During cardiac surgery, specifically sternotomy, cranial hypoperfusion is linked to cerebral ischemia, increased risk of perioperative watershed stroke, and other neurocognitive complications. The purpose of this study was to retrospectively examine the effect of sex hormones in females and exercise prehabilitation in males on median sternotomy-induced changes in cranial perfusion in a large animal model of heart failure. Cranial blood flow (CBF) before and 10 and 60 min poststernotomy was analyzed in eight groups of Yucatan mini-swine: female control, aortic banded, ovariectomized, and ovariectomized + aortic banded; male control, aortic banded, aortic banded + continuous exercise trained, and aortic banded + interval exercise trained. A median sternotomy decreased cranial perfusion during surgery in all pigs (~24 ± 2% relative to baseline; P ≤ 0.05). CBF was 30 ± 7% lower across all time points in all females vs. all males (P ≤ 0.05) and sternotomy decreased cranial perfusion (P ≤ 0.05) independent of sex (females = 34 ± 3% and males = 14 ± 3%) and aortic banding (intact control = 31 ± 5% and intact aortic banded = 31 ± 4%). CBF recovery at 60 min tended to be better in females vs. males (relative to 10 min poststernotomy, females = 23 ± 13% vs. males = -1 ± 5%) and intact aortic banded vs. control pigs (relative to 10 min poststernotomy, aortic banded = 43 ± 20% vs. control = 6 ± 16%; P ≤ 0.05) at 60 min poststernotomy. Ovariectomy impaired CBF recovery during cranial reperfusion 60 min following sternotomy (relative to baseline, all intact females = -1 ± 9% vs. all ovariectomized females = -15 ± 4%; P ≤ 0.05). Chronic exercise training completely prevented significant sternotomy-induced cranial hypoperfusion independent of aortic banding (sternotomy-induced deficit, all sedentary males = -24 ± 6% vs. all exercise-trained males = -7 ± 3%; P ≤ 0.05). Female sex hormones protected against impaired CBF recovery during reperfusion, while chronic exercise training prevented sternotomy-induced cranial hypoperfusion despite cardiac pressure overload.NEW & NOTEWORTHY Our findings suggest a median sternotomy may predispose patients, possibly postmenopausal women and sedentary men, to perioperative cerebral ischemia, an increased risk of cardiac surgery-related stroke, and resulting neurocognitive impairments. Specifically, data from this common surgical procedure show: 1) median sternotomy independently decreases cranial perfusion; 2) female sex hormones improve cranial blood flow recovery following sternotomy; and 3) exercise prehabilitation prevents sternotomy-induced cranial hypoperfusion. Exercise prehabilitation before cardiac surgery may be advantageous for capable patients.


Assuntos
Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular , Terapia por Exercício/métodos , Hormônios Esteroides Gonadais/metabolismo , Esternotomia/efeitos adversos , Esternotomia/reabilitação , Animais , Isquemia Encefálica/etiologia , Feminino , Masculino , Cuidados Pré-Operatórios/métodos , Suínos , Porco Miniatura
6.
Basic Res Cardiol ; 111(6): 61, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27624732

RESUMO

Accelerated development of coronary atherosclerosis is a defining characteristic of familial hypercholesterolemia (FH). However, the recent data highlight a significant cardiovascular risk prior to the development of critical coronary stenosis. We, therefore, examined the hypothesis that FH produces coronary microvascular dysfunction and impairs coronary vascular control at rest and during exercise in a swine model of FH. Coronary vascular responses to drug infusions and exercise were examined in chronically instrumented control and FH swine. FH swine exhibited ~tenfold elevation of plasma cholesterol and diffuse coronary atherosclerosis (20-60 % plaque burden). Similar to our recent findings in the systemic vasculature in FH swine, coronary smooth muscle nitric oxide sensitivity was increased in vivo and in vitro with maintained endothelium-dependent vasodilation in vivo in FH. At rest and during exercise, FH swine exhibited increased myocardial O2 extraction resulting in reduced coronary venous SO2 and PO2 versus control. During exercise in FH swine, the transmural distribution of coronary blood flow was unchanged; however, a shift toward anaerobic cardiac metabolism was revealed by increased coronary arteriovenous H(+) concentration gradient. This shift was associated with a worsening of cardiac efficiency (relationship between cardiac work and O2 consumption) in FH during exercise owing, in part, to a generalized reduction in stroke volume which was associated with increased left atrial pressure in FH. Our data highlight a critical role for coronary microvascular dysfunction as a contributor to impaired myocardial O2 balance, cardiac ischemia, and impaired cardiac function prior to the development of critical coronary stenosis in FH.


Assuntos
Circulação Coronária , Endotélio Vascular/fisiopatologia , Hiperlipoproteinemia Tipo II/fisiopatologia , Condicionamento Físico Animal/fisiologia , Animais , Doença da Artéria Coronariana/fisiopatologia , Modelos Animais de Doenças , Hemodinâmica/fisiologia , Consumo de Oxigênio/fisiologia , Suínos
7.
J Physiol ; 594(18): 5271-84, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27104887

RESUMO

KEY POINTS: Physiologically relevant rodent models of non-alcoholic steatohepatitis (NASH) that resemble the human condition are limited. Exercise training and energy restriction are first-line recommendations for the treatment of NASH. Hyperphagic Otsuka Long-Evans Tokushima fatty rats fed a western diet high in fat, sucrose and cholesterol for 24 weeks developed a severe NASH with fibrosis phenotype. Moderate intensity exercise training and modest energy restriction provided some improvement in the histological features of NASH that coincided with alterations in markers of hepatic stellate cell activation and extracellular matrix remodelling. The present study highlights the importance of lifestyle modification, including exercise training and energy restriction, in the regulation of advanced liver disease. ABSTRACT: The incidence of non-alcoholic steatohepatitis (NASH) is rising but the efficacy of lifestyle modifications to improve NASH-related outcomes remain unclear. We hypothesized that a western diet (WD) would induce NASH in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat and that lifestyle modification would improve this condition. Eight-week-old Long-Evans Tokushima Otsuka (L) and OLETF (O) rats consumed a control diet (10% kcal fat, 3.5% sucrose) or a WD (45% kcal fat, 17% sucrose, 1% cholesterol) for 24 weeks. At 20 weeks of age, additional WD-fed OLETFs were randomized to sedentary (O-SED), food restriction (O-FR; ∼25% kcal reduction vs. O-SED) or exercise training (O-EX; treadmill running 20 m min(-1) with a 15% incline, 60 min day(-1) , 5 days week(-1) ) conditions for 12 weeks. WD induced a NASH phenotype in OLETFs characterized by hepatic fibrosis (collagen 1α1 mRNA and hydroxyproline content), as well as elevated inflammation and non-alcoholic fatty liver disease activity scores, and hepatic stellate cell activation (α-smooth muscle actin) compared to Long-Evans Tokushima Otsuka rats. FR and EX modestly improved NASH-related fibrosis markers (FR: hydroxyproline content, P < 0.01; EX: collagen 1α1 mRNA, P < 0.05; both: fibrosis score, P < 0.01) and inflammation (both: inflammation score; FR: interleukin-1ß and tumor necrosis factor α) vs. O-SED. FR reduced hepatic stellate cell activation markers (transforming growth factor-ß protein and α-smooth muscle actin mRNA), whereas EX increased the hepatic stellate cell senescence marker CCN1 (P < 0.01 vs. O-SED). Additionally, both FR and EX normalized extracellular matrix remodelling markers to levels similar to L-WD (P > 0.05). Although neither EX nor FR led to complete resolution of the WD-induced NASH phenotype, both independently benefitted liver fibrosis via altered hepatic stellate cell activation and extracellular matrix remodelling.


Assuntos
Restrição Calórica , Cirrose Hepática/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Condicionamento Físico Animal , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Colesterol na Dieta/efeitos adversos , Citocinas/genética , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Sacarose Alimentar/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/dietoterapia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/metabolismo , Ratos Endogâmicos OLETF
8.
Am J Physiol Gastrointest Liver Physiol ; 308(6): G540-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25573175

RESUMO

The progression in nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis is a serious health concern, but the underlying mechanisms remain unclear. We hypothesized that chronic inhibition of nitric oxide (NO) synthase (NOS) via N(ω)-nitro-L-arginine methyl ester (L-NAME) would intensify liver injury in a rat model of obesity, insulin resistance, and NAFLD. Obese Otsuka Long-Evans Tokushima fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats received control or L-NAME (65-70 mg·kg(-1)·day(-1))-containing drinking water for 4 wk. L-NAME treatment significantly (P < 0.05) reduced serum NO metabolites and food intake in both groups. Remarkably, despite no increase in body weight, L-NAME treatment increased hepatic triacylglycerol content (+40%, P < 0.05) vs. control OLETF rats. This increase was associated with impaired (P < 0.05) hepatic mitochondrial state 3 respiration. Interestingly, the opposite effect was found in LETO rats, where L-NAME increased (P < 0.05) hepatic mitochondrial state 3 respiration. In addition, L-NAME induced a shift toward proinflammatory M1 macrophage polarity, as indicated by elevated hepatic CD11c (P < 0.05) and IL-1ß (P = 0.07) mRNA in OLETF rats and reduced expression of the anti-inflammatory M2 markers CD163 and CD206 (P < 0.05) in LETO rats. Markers of total macrophage content (CD68 and F4/80) mRNA were unaffected by L-NAME in either group. In conclusion, systemic NOS inhibition in the obese OLETF rats reduced hepatic mitochondrial respiration, increased hepatic triacylglycerol accumulation, and increased hepatic inflammation. These findings suggest an important role for proper NO metabolism in the hepatic adaptation to obesity.


Assuntos
Inibidores Enzimáticos/toxicidade , Fígado/efeitos dos fármacos , NG-Nitroarginina Metil Éster/toxicidade , Óxido Nítrico Sintase/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Adaptação Fisiológica , Animais , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Progressão da Doença , Ingestão de Alimentos , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Lipídeos/sangue , Fígado/enzimologia , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/etiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Óxido Nítrico/sangue , Óxido Nítrico Sintase/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/sangue , Obesidade/enzimologia , Obesidade/fisiopatologia , Ratos Endogâmicos OLETF , Fatores de Tempo
9.
Med Sci Sports Exerc ; 47(3): 556-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24983336

RESUMO

BACKGROUND: There is increasing use of high-intensity interval-type exercise training in the management of many lifestyle-related diseases. PURPOSE: This study aimed to test the hypothesis that vigorous-intensity interval exercise is as effective as traditional moderate-intensity aerobic exercise training for nonalcoholic fatty liver disease (NAFLD) outcomes in obese, Otsuka Long-Evans Tokushima Fatty (OLETF) rats. METHODS: OLETF rats (age, 20 wk; n = 8-10 per group) were assigned to sedentary (O-SED), moderate-intensity exercise training (O-MOD EX; 20 m·min(-1), 15% incline, 60 min·d(-1), 5 d·wk(-1) of treadmill running), or vigorous-intensity interval exercise training (O-VIG EX; 40 m·min(-1), 15% incline, 6 × 2.5 min bouts per day, 5 d·wk(-1) of treadmill running) groups for 12 wk. RESULTS: Both MOD EX and VIG EX effectively lowered hepatic triglycerides, serum alanine aminotransferase (ALT), perivenular fibrosis, and hepatic collagen 1α1 messenger RNA (mRNA) expression (vs O-SED, P < 0.05). In addition, both interventions increased hepatic mitochondrial markers (citrate synthase activity and fatty acid oxidation) and suppressed markers of de novo lipogenesis (fatty acid synthase, acetyl coenzyme A carboxylase, Elovl fatty acid elongase 6, and steroyl CoA desaturase-1), whereas only MOD EX increased hepatic mitochondrial Beta-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity and hepatic triglyceride export marker apoB100 and lowered fatty acid transporter CD36 compared with O-SED. Moreover, whereas total hepatic macrophage population markers (CD68 and F4/80 mRNA) did not differ among groups, MOD EX and VIG EX lowered M1 macrophage polarization markers (CD11c, interleukin-1ß, and tumor necrosis factor α mRNA) and MOD EX increased M2 macrophage marker, CD206 mRNA, compared with O-SED. CONCLUSIONS: The accumulation of 15 min·d(-1) of VIG EX for 12 wk had similar effectiveness as 60 min·d(-1) of MOD EX in the management of NAFLD in OLETF rats. These findings may have important health outcome implications as we work to design better exercise training programs for patients with NAFLD.


Assuntos
Terapia por Exercício/métodos , Hepatopatia Gordurosa não Alcoólica/terapia , Condicionamento Físico Animal , Animais , Glicemia/metabolismo , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Glicólise , Coração/anatomia & histologia , Lipídeos/sangue , Lipogênese , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Ratos Endogâmicos OLETF , Triglicerídeos/metabolismo , Redução de Peso
10.
J Appl Physiol (1985) ; 116(9): 1156-64, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24577062

RESUMO

We tested the hypothesis that nonalcoholic fatty liver disease (NAFLD) is associated with reduced hepatic endothelial nitric oxide synthase (eNOS) activation status via S1177 phosphorylation (p-eNOS) and is prevented by daily voluntary wheel running (VWR). Hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an established model of obesity, type 2 diabetes (T2D) and NAFLD, and normophagic controls [Long-Evans Tokushima Otsuka (LETO)] were studied at 8, 20, and 40 wk of age. Basal hepatic eNOS phosphorylation (p-eNOS/eNOS) was similar between LETO and OLETFs with early hepatic steatosis (8 wk of age) and advanced steatosis, hyperinsulinemia, and hyperglycemia (20 wk of age). In contrast, hepatic p-eNOS/eNOS was significantly lower (P < 0.05) in OLETF rats with T2D advancement and the transition to more advanced NAFLD with inflammation and fibrosis [increased tumor necrosis factor-α (TNF-α), CD68, and CD163 mRNA expression; 40 wk of age]. Reduced hepatic eNOS activation status in 40-wk OLETF rats was significantly correlated with reduced p-Akt/Akt (r = 0.73, P < 0.05), reduced serum insulin (r = 0.59, P < 0.05), and elevated serum glucose (r = -0.78, P < 0.05), suggesting a link between impaired glycemic control and altered hepatic nitric oxide metabolism. VWR by OLETF rats, in conjunction with NAFLD and T2D prevention, normalized p-eNOS/eNOS and p-Akt/Akt to LETO levels. Basal activation of hepatic eNOS and Akt are maintained until advanced NAFLD and T2D development in obese OLETF rats. The prevention of this reduction by VWR may result from maintained insulin sensitivity and glycemic control.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Progressão da Doença , Hiperfagia/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Condicionamento Físico Animal/fisiologia , Animais , Diabetes Mellitus Tipo 2/prevenção & controle , Hiperfagia/prevenção & controle , Fígado/enzimologia , Masculino , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fosforilação/fisiologia , Condicionamento Físico Animal/métodos , Distribuição Aleatória , Ratos , Ratos Endogâmicos OLETF
11.
Am J Physiol Regul Integr Comp Physiol ; 306(8): R596-606, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24523340

RESUMO

Adipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk. WR and DR rats exhibited markedly lower adiposity (7.1 ± 0.4 and 15.7 ± 1.1% body fat, respectively) relative to SED (27 ± 1.2% body fat), as well as improved blood lipid profiles and systemic markers of insulin resistance. Reduced adiposity in both WR and DR was associated with decreased AT mRNA expression of inflammatory genes (e.g., MCP-1, TNF-α, and IL-6) and markers of immune cell infiltration (e.g., CD8, CD11c, and F4/80). The extent of these effects were most pronounced in visceral AT compared with subcutaneous and periaortic AT. Markers of inflammation in brown AT were upregulated with WR but not DR. In periaortic AT, WR- and DR-induced reductions in expression and secretion of cytokines were accompanied with a more atheroprotective gene expression profile in the adjacent aortic wall. WR, but not DR, resulted in greater insulin-stimulated relaxation in the aorta; an effect that was, in part, mediated by a decrease in insulin-induced endothelin-1 activation in WR aorta. Collectively, we show in OLETF rats that lower adiposity leads to less AT and aortic inflammation, as well as an exercise-specific improvement in insulin-stimulated vasorelaxation.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade/fisiologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Obesidade/metabolismo , Tecido Adiposo/irrigação sanguínea , Animais , Peso Corporal/fisiologia , Dieta , Modelos Animais de Doenças , Interleucina-6/metabolismo , Masculino , Fenótipo , Ratos , Ratos Endogâmicos OLETF , Corrida/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
12.
J Cardiothorac Surg ; 9: 2, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24387639

RESUMO

BACKGROUND: In humans there is a positive association between epicardial adipose tissue (EAT) volume and coronary atherosclerosis (CAD) burden. We tested the hypothesis that EAT contributes locally to CAD in a pig model. METHODS: Ossabaw miniature swine (n=9) were fed an atherogenic diet for 6 months to produce CAD. A 15 mm length by 3-5 mm width coronary EAT (cEAT) resection was performed over the middle segment of the left anterior descending artery (LAD) 15 mm distal to the left main bifurcation. Pigs recovered for 3 months on atherogenic diet. Intravascular ultrasound (IVUS) was performed in the LAD to quantify atheroma immediately after adipectomy and was repeated after recovery before sacrifice. Coronary wall biopsies were stained immunohistochemically for atherosclerosis markers and cytokines and cEAT was assayed for atherosclerosis-related genes by RT-PCR. Total EAT volume was measured by non-contrast CT before each IVUS. RESULTS: Circumferential plaque length increased (p<0.05) in the proximal and distal LAD segments from baseline until sacrifice whereas plaque length in the middle LAD segment underneath the adipectomy site did not increase. T-cadherin, scavenger receptor A and adiponectin were reduced in the intramural middle LAD. Relative to control pigs without CAD, 11ß-hydroxysteroid dehydrogenase (11ßHSD-1), CCL19, CCL21, prostaglandin D2 synthase, gp91phox [NADPH oxidase], VEGF, VEGFGR1, and angiotensinogen mRNAs were up-regulated in cEAT. EAT volume increased over 3 months. CONCLUSION: In pigs used as their own controls, resection of cEAT decreased the progression of CAD, suggesting that cEAT may exacerbate coronary atherosclerosis.


Assuntos
Tecido Adiposo/cirurgia , Aterosclerose/cirurgia , Procedimentos Cirúrgicos Cardíacos/métodos , Doença da Artéria Coronariana/cirurgia , Pericárdio/cirurgia , Animais , Aterosclerose/diagnóstico , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico , Modelos Animais de Doenças , Progressão da Doença , Masculino , Suínos , Porco Miniatura , Ultrassonografia de Intervenção
13.
Exp Physiol ; 99(2): 454-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24213857

RESUMO

NEW FINDINGS: What is the central question of this study? Does endurance exercise training cause anti-atherogenic effects on the endothelium in a swine model of familial hypercholesterolaemia (FH), and how are these effects distributed across veins, arteries and multiple vascular territories within each system? What is the main finding and its importance? Coronary artery endothelium-dependent vasomotor function was depressed in sedentary FH pigs compared with sedentary control animals, and exercise training did not change vasomotor function within FH. In systemic conduit arteries and veins, few effects of FH on endothelial cell protein expression were noted, including both pro- and anti-atherogenic changes. These findings suggest that exercise training does not produce a consistently improved endothelial cell phenotype in either coronary or systemic conduit vessels in this swine model of FH. Exercise training has emerged as an intervention for the primary and secondary prevention of coronary artery disease, but the mechanisms through which training reduces relative risk are not completely understood. The goal of this study was to investigate the impact of endurance exercise training on vasomotor function and vascular cell phenotype in coronary arteries and systemic conduit arteries and veins against a background of advanced atherosclerosis. We tested the hypothesis that exercise training restores endothelial vasomotor function and produces an anti-atherogenic endothelial and smooth muscle cell phenotype in familial hypercholesterolaemic (FH) swine. The study included 30 FH (15 exercised and 15 sedentary) and 13 non-FH control male castrated swine. The exercise-training intervention consisted of treadmill running 5 days per week for 16-20 weeks. Tissues sampled at sacrifice included vascular rings from the coronary circulation for vasomotor function experiments (dose-dependent bradykinin-induced vasorelaxation) and endothelial cells (ECs) from isolated segments of the thoracic aorta, the carotid, brachial, femoral and renal arteries, as well as each corresponding regionally associated vein, and from the abdominal vena cava, the right coronary and internal mammary arteries. Smooth muscle cells were sampled from the right coronary artery only. Vascular cell phenotype was assessed by immunoblotting for a host of both pro- and anti-atherogenic markers [e.g. endothelial nitric oxide synthase, p67phox, superoxide dismutase 1 (SOD1)]. Coronary artery endothelium-dependent vasomotor function was depressed in sedentary FH pigs compared with sedentary control pigs, and exercise training did not change vasomotor function within FH. In contrast, only scattered effects of FH on EC phenotype were noted across the vasculature, which included both pro- and anti-atherogenic changes in EC protein expression (e.g. increased endothelial nitric oxide synthase in carotid artery ECs, decreased p67phox in brachial artery ECs, but decreased expression of the antioxidant protein SOD1 in thoracic vena cava; all P < 0.05). In thoracic vena cava ECs, this deficit was corrected by exercise training, while no other effects of exercise were observed in conduit vessel EC phenotype. Thus, while exercise training abrogated the adverse effect of hypercholesterolaemia on thoracic vena cava SOD1 expression, it appears that exercise training does not produce a consistently improved EC phenotype in either coronary or systemic conduit vessels in this FH swine model.


Assuntos
Vasos Coronários/fisiopatologia , Células Endoteliais/fisiologia , Endotélio Vascular/fisiopatologia , Hiperlipoproteinemia Tipo II/fisiopatologia , Condicionamento Físico Animal/fisiologia , Veias/fisiopatologia , Animais , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Bradicinina/metabolismo , Circulação Coronária/efeitos dos fármacos , Circulação Coronária/fisiologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Fosfoproteínas/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Suínos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/metabolismo , Sistema Vasomotor/fisiopatologia , Veias/efeitos dos fármacos , Veias/metabolismo
14.
J Vasc Surg ; 58(6): 1688-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24280329

RESUMO

The capability for externally applied rhythmic limb compressions to improve the outcomes of patients with peripheral artery disease has been recognized for nearly a century. Modern technology has permitted the development of portable and cost-effective intermittent pneumatic compression (IPC) systems to be made readily available for affordable at-home use. Mounting clinical evidence attests to the effectiveness of this strategy, with improvements in claudication distance rivaling those seen with exercise training or pharmacologic interventions, or both. However, owing to a lack of mechanistic knowledge, whether current application protocols are optimized for clinical outcomes is unknown. Traditional thinking has suggested that IPC transiently elevates blood flow, which is purported to relieve ischemia, improve vascular function, and promote vascular remodeling. Surprisingly, much ambiguity exists regarding the physiologic stimuli and adaptations that are responsible for the clinical effectiveness of IPC treatment. This review presents and critically discusses emerging evidence that sheds new light on the physiologic and molecular responses to IPC therapy. These novel findings highlight the importance of characterizing the phasic changes in the hemodynamic profile during IPC application. Further, these studies indicate that factors other than the elevation in blood flow during this therapy should be taken into account when designing an optimal IPC device. Lastly, we advance the hypothesis that manipulation of IPC stimulation characteristics could potentially magnify the documented clinical benefits associated with this therapy. In conclusion, recent evidence challenges the physiologic basis on which current IPC systems were designed, and further research to elucidate the basic and clinical outcomes of alternate stimulation characteristics is necessary.


Assuntos
Dispositivos de Compressão Pneumática Intermitente , Perna (Membro)/irrigação sanguínea , Doença Arterial Periférica/terapia , Humanos , Doença Arterial Periférica/fisiopatologia , Fluxo Sanguíneo Regional/fisiologia , Resultado do Tratamento
15.
J Appl Physiol (1985) ; 115(12): 1767-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24157527

RESUMO

Hypercholesterolemia impairs endothelial function [e.g., the nitric oxide (NO)-cyclic GMP-phosphodiesterase 5 (PDE5) pathway], limits shear stress-induced vasodilation, and is therefore expected to reduce exercise-induced vasodilation. To assess the actual effects of hypercholesterolemia on endothelial function and exercise-induced vasodilation, we compared the effects of endothelial NO synthase (eNOS) and PDE5 inhibition in chronically instrumented Yucatan (Control) and Rapacz familial hypercholesterolemic (FH) swine, at rest and during treadmill exercise. The increases in systemic vascular conductance produced by ATP (relative to nitroprusside) and exercise were blunted in FH compared with Control swine. The vasoconstrictor response to eNOS inhibition, with nitro-l-arginine (NLA), was attenuated in FH compared with Control swine, both at rest and during exercise. Furthermore, whereas the vasodilator response to nitroprusside was enhanced slightly, the vasodilator response to PDE5 inhibition, with EMD360527, was reduced in FH compared with Control swine. Finally, in the pulmonary circulation, FH resulted in attenuated vasodilator responses to ATP, while maintaining the responses to both NLA and EMD360527. In conclusion, hypercholesterolemia reduces exercise-induced vasodilation in the systemic but not the pulmonary circulation. This reduction appears to be the principal result of a decrease in NO bioavailability, which is mitigated by a lower PDE5 activity.


Assuntos
Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/fisiopatologia , Óxido Nítrico/metabolismo , Condicionamento Físico Animal/fisiologia , Vasodilatação/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Disponibilidade Biológica , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Endotélio/fisiopatologia , Hiperemia/metabolismo , Hiperemia/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroprussiato/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Circulação Pulmonar/efeitos dos fármacos , Circulação Pulmonar/fisiologia , Suínos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
16.
Exp Physiol ; 98(11): 1576-84, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23833052

RESUMO

The mechanisms underlying exercise-induced increases in adipose tissue blood flow and lipolysis involve both ß-adrenergic receptor (ßAR)- and natriuretic peptide receptor (NPR)-dependent processes. We hypothesized that daily wheel running (RUN) would increase the expression of NPR1, NPR2, ßAR2 and ßAR3 in retroperitoneal (RP) and epididymal (EPI) adipose tissues of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Four-week-old OLETF rats were assigned to sedentary (SED, n = 6), calorie-restricted (CR, n = 8; fed 70% of SED) or RUN groups (n = 8). Rats were killed at 40 weeks of age. By design, body weight and adiposity were similar between RUN and CR animals, but each was lower than SED (P < 0.01). Compared with SED, RP depots of RUN rats exhibited 1.7- to 3.2-fold greater NPR1, NPR2, ßAR2 and ßAR3 mRNA levels (all P < 0.05). There were no differences between CR and SED in the expression of these genes in RP adipose tissues, and there were no differences in gene expression among groups in EPI adipose tissues. At the protein level, ßAR2 and ßAR3 were elevated in RUN and CR groups relative to the SED group in RP adipose tissues. In order to gain insight into the mechanisms underlying the activity-induced increases in NPR and ßAR mRNAs, RP adipose tissue explants from Wistar rats were treated with atrial natriuretic peptide (ANP), adrenaline and/or S-nitroso-N-acetyl-dl-penicillamine (SNAP; a nitric oxide donor) in organ culture experiments. SNAP synergistically enhanced adrenaline- and ANP-stimulated increases in NPR2 and ßAR2 mRNA levels. Our data suggest that physical activity-induced increases in nitric oxide interact with adrenaline and ANP to trigger the induction of NPR and ßAR mRNAs in the RP adipose tissue depot of the OLETF rat.


Assuntos
Restrição Calórica , Gordura Intra-Abdominal/metabolismo , Condicionamento Físico Animal/fisiologia , Receptores Adrenérgicos beta/biossíntese , Receptores do Fator Natriurético Atrial/biossíntese , Animais , Fator Natriurético Atrial/farmacologia , Epinefrina/farmacologia , Masculino , Ratos , Ratos Endogâmicos OLETF , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores do Fator Natriurético Atrial/efeitos dos fármacos , Corrida , S-Nitroso-N-Acetilpenicilamina/farmacologia
17.
BMC Genomics ; 14: 443, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23822099

RESUMO

BACKGROUND: The heterogeneous progression of atherosclerotic disease in the peripheral arteries is currently not well understood. In humans, artery specific disease progression is partly attributed to the local hemodynamic environments. However, despite similar hemodynamic environments, porcine brachial arteries are protected while femoral arteries are highly susceptible to advanced lesion formation. The aim of this investigation was to determine whether artery specific gene expression patterns contribute to the uneven distribution of peripheral arterial disease (PAD) in Rapacz Familial-Hypercholesterolemic (FHC) swine. RESULTS: Histological results confirmed rapid atherosclerotic disease progression in femoral but not brachial arteries. A total of 18,922 probe sets had sufficient signal abundance. A main effect for age and artery was observed for 1784 and 1256 probe sets, respectively. A significant age x artery interaction was found for 184 probe sets. Furthermore, comparison between arteries found a decrease from 714 to 370 differentially expressed transcripts from nine months to two years of age. Gene ontology analysis of the 56 genes with a main effect for artery and an age x artery interaction identified vascular smooth muscle contraction as enhanced biological signaling pathway. CONCLUSION: This is the first investigation to report that the total number of differential genes decreases with diverging atherosclerotic disease pattern between porcine brachial and femoral arteries.


Assuntos
Aterosclerose/complicações , Aterosclerose/genética , Progressão da Doença , Hiperlipoproteinemia Tipo II/complicações , Doença Arterial Periférica/complicações , Doença Arterial Periférica/genética , Transcriptoma , Animais , Aterosclerose/patologia , Doença Arterial Periférica/patologia , Suínos
18.
Am J Physiol Regul Integr Comp Physiol ; 304(9): R763-71, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23467323

RESUMO

Physical activity-induced prevention of hepatic steatosis is maintained during short-term (7-day) transitions to an inactive state; however, whether these protective effects are present under a longer duration of physical inactivity is largely unknown. Here, we sought to determine whether previous physical activity had protective effects on hepatic steatosis and metabolic health following 4 wk of physical inactivity. Four-week old, hyperphagic, male Otsuka Long-Evans Tokushima fatty (OLETF) rats were randomly assigned to either a sedentary group for 16 wk (OLETF-SED), given access to running wheels for 16 wk with wheels locked 5 h (OLETF-WL5hr) or given access to running wheels for 12 wk with wheels locked 4 wk (OLETF-WL4wk) prior to death. Four weeks of physical inactivity caused hepatic steatosis development, but liver triglycerides remained 60% lower than OLETF-SED (P < 0.01), and this was associated with only a partial loss in activity-induced improvements in body composition, serum lipids, and glycemic control. Total hepatic mitochondrial palmitate oxidation, citrate synthase, and ß-HAD activity returned to SED levels following 4 wk of inactivity, whereas markers of fatty acid uptake and lipogenesis remained relatively suppressed following 4 wk of inactivity. In addition, 4 wk of inactivity caused a complete loss of activity-induced increases in serum IL-6 and reductions in regulated upon activation, normal T-cell expressed, and secreted (RANTES), and a partial loss in reductions in leptin, monocyte chemoattractant protein-1, and TNF-α. In conclusion, 4 wk of physical inactivity does not result in a complete loss in physical activity-induced benefits but does cause deterioration in the liver phenotype and overall metabolic health in hyperphagic OLETF rats.


Assuntos
Fígado Gorduroso/patologia , Hiperfagia/patologia , Atividade Motora/fisiologia , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Absorciometria de Fóton , Adaptação Fisiológica/fisiologia , Adiposidade/genética , Adiposidade/fisiologia , Animais , Western Blotting , Peso Corporal/fisiologia , Citrato (si)-Sintase/metabolismo , Progressão da Doença , Ácidos Graxos/metabolismo , Hiperfagia/genética , Inflamação/genética , Inflamação/patologia , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Fígado/patologia , Masculino , Oxirredução , Ratos , Ratos Endogâmicos OLETF , Corrida/fisiologia
19.
Exp Physiol ; 98(1): 337-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22709650

RESUMO

Early vascular changes at the molecular level caused by adoption of a sedentary lifestyle are incompletely characterized. Herein, we employed the rodent wheel-lock model to identify mRNAs in the arterial wall that are responsive to the acute transition from higher to lower levels of daily physical activity. Specifically, we evaluated whether short-term cessation of voluntary wheel running alters vascular mRNA levels in rat conduit arteries previously reported to have marked increases (i.e. iliac artery) versus marked decreases (i.e. renal artery) in blood flow during running. We used young female Wistar rats with free access to voluntary running wheels. Following 23 days of voluntary running (average distance of ∼15 km per night; ∼4.4 h per night), rats in one group were rapidly transitioned to a sedentary state by locking the wheels for 7 days (n = 9; wheel-lock 7 day rats) or remained active in a second group for an additional 7 days (n = 9; wheel-lock 0 day rats). Real-time PCR was conducted on total RNA isolated from iliac and renal arteries to evaluate expression of 25 pro-atherogenic and anti-atherogenic genes. Compared with the iliac arteries of wheel-lock 0 day rats, iliac arteries of wheel-lock 7 day rats exhibited increased expression of TNFR1 (+19%), ET1 (+59%) and LOX-1 (+31%; all P < 0.05). Moreover, compared with renal arteries of wheel-lock 0 day rats, renal arteries of wheel-lock 7 day rats exhibited decreased expression of ETb (-23%), p47phox (-32%) and p67phox (-19%; all P < 0.05). These data demonstrate that cessation of voluntary wheel running for 7 days produces modest, but differential changes in mRNA levels between the iliac and renal arteries of healthy rats. This heterogeneous influence of short-term physical inactivity could be attributed to the distinct alteration in haemodynamic forces between arteries.


Assuntos
Artérias/metabolismo , Endotelina-1/genética , Atividade Motora/fisiologia , NADPH Oxidases/genética , Receptor de Endotelina B/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Artéria Renal/metabolismo , Corrida/fisiologia , Receptores Depuradores Classe E/genética , Animais , Feminino , Ílio/irrigação sanguínea , Fosfoproteínas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
20.
Appl Physiol Nutr Metab ; 37(6): 1054-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22891896

RESUMO

Chronic treatment with fibroblast growth factor 21 (FGF-21) favorably improves obesity and nonalcoholic fatty liver disease (NAFLD) outcomes; however, FGF-21 expression is paradoxically elevated in obese conditions. Here, we sought to determine the effects of obesity prevention by daily exercise (EX) vs. caloric restriction (CR) on hepatic FGF-21 in the hyperphagic, Otsuka Long-Evans Tokushima Fatty (OLETF) rat. Four-week-old male OLETF rats were randomized into groups (n = 7-8 per group) of ad libitum fed, sedentary (OLETF-SED), voluntary wheel running exercise (OLETF-EX), or CR (OLETF-CR; 70% of SED) until 40 weeks of age. Nonhyperphagic, Long-Evans Tokushima Otsuka (LETO-SED) rats served as controls. Both daily EX and CR prevented obesity and NAFLD development observed in the OLETF-SED animals. This was associated with significantly (p < 0.01) lower serum FGF-21 (~80% lower) and hepatic FGF-21 mRNA expression (~65% lower) in the OLETF-EX and OLETF-CR rats compared with the OLETF-SED rats. However, hepatic FGF-21 protein content was reduced to the greatest extent in the OLETF-EX animals (50% of OLETF-SED) and did not differ between the OLETF-SED and OLETF-CR rats. Hepatic FGF-21 signaling mediators - hepatic FGF-21 receptor 2 (FGFR2, mRNA expression), hepatic FGF-21 receptor substrate 2 (FRS2, protein content), and co-receptor ß-Klotho (protein content) - were all elevated (60%-100%, ~40%, and +30%-50%, respectively) in the OLETF-EX and OLETF-CR animals compared with the OLETF-SED animals. Daily exercise and caloric restriction modulate hepatic FGF-21 and its primary signaling mediators in the hyperphagic OLETF rat. Enhanced metabolic action of FGF-21 may partially explain the benefits of exercise and caloric restriction on NAFLD outcomes.


Assuntos
Restrição Calórica , Fatores de Crescimento de Fibroblastos/análise , Hiperfagia/complicações , Fígado/química , Obesidade/prevenção & controle , Esforço Físico/fisiologia , Animais , Fatores de Crescimento de Fibroblastos/fisiologia , Fígado/metabolismo , Masculino , Obesidade/etiologia , Obesidade/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Endogâmicos OLETF , Receptores de Fatores de Crescimento de Fibroblastos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA