Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 14(1): 5402, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443409

RESUMO

Cancer is one of the major causes of death worldwide and the development of multidrug resistance (MDR) in cancer cells is the principal cause of chemotherapy failure. To gain insights into the specific mechanisms of MDR in cancer cell lines, we developed a novel method for the combined analysis of recently published datasets on drug sensitivity and CRISPR loss-of-function screens for the same set of cancer cell lines. For our analysis, we first selected cell lines that consistently exhibit drug resistance across several classes of compounds. We then identified putative resistance genes for each class of compound and used inferred gene regulatory networks (GRNs) to study possible mechanisms underlying the development of MDR in the identified cancer cell lines. We show that the same method of analysis can also be used to identify cell lines that consistently exhibit resistance to the gene knockout effect of the CRISPR-Cas9 technique and to study the possible underlying mechanisms. In the GRN associated to the drug resistant cell lines, we identify genes previously associated with resistance (UHMK1, RALYL, MGST3, USP9X, and ESRG), genes for which an indirect association can be identified (SPINK13, LINC00664, MRPL38, and EMILIN3), and genes that are found to be overexpressed in non-resistant cancer cell lines (MRPL38, EMILIN3 and RALYL). In the GRNs associated to the CRISPR-Cas9 resistance mechanism, none of the identified genes has been previously reported in the admittedly sparse literature on the subject. However, some of these genes have a common role: APBB2, RUNX1T1, ZBTB7C, and ISX regulate transcription, while APBB2, BTG3, ZBTB7C, SZRD1 and LEF1 have a function in regulating proliferation, suggesting a role for these two pathways. While our results are specific for the lung cancer cell lines we selected for this work, our method of analysis can be applied to cell lines from other tissues and for which the required data is available.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Pulmonares , Humanos , Linhagem Celular , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Ubiquitina Tiolesterase , Peptídeos e Proteínas de Sinalização Intracelular
2.
Front Genet ; 15: 1270387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348453

RESUMO

Preserving data privacy is an important concern in the research use of patient data. The DataSHIELD suite enables privacy-aware advanced statistical analysis in a federated setting. Despite its many applications, it has a few open practical issues: the complexity of hosting a federated infrastructure, the performance penalty imposed by the privacy-preserving constraints, and the ease of use by non-technical users. In this work, we describe a case study in which we review different breast cancer classifiers and report our findings about the limits and advantages of such non-disclosive suite of tools in a realistic setting. Five independent gene expression datasets of breast cancer survival were downloaded from Gene Expression Omnibus (GEO) and pooled together through the federated infrastructure. Three previously published and two newly proposed 5-year cancer-free survival risk score classifiers were trained in a federated environment, and an additional reference classifier was trained with unconstrained data access. The performance of these six classifiers was systematically evaluated, and the results show that i) the published classifiers do not generalize well when applied to patient cohorts that differ from those used to develop them; ii) among the methods we tried, the classification using logistic regression worked better on average, closely followed by random forest; iii) the unconstrained version of the logistic regression classifier outperformed the federated version by 4% on average. Reproducibility of our experiments is ensured through the use of VisualSHIELD, an open-source tool that augments DataSHIELD with new functions, a standardized deployment procedure, and a simple graphical user interface.

3.
J Telemed Telecare ; : 1357633X231203064, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820368

RESUMO

AIM: The aim of this study is to assess if a patient-focused mobile application can increase compliance with active Enhanced Recovery After Surgery (ERAS) items and thereby improve surgery-related outcomes and patient satisfaction. METHOD: This is a prospective observational study of patients admitted for elective colorectal surgery, under the ERAS protocol, and having access to the mobile application iColon during all perioperative phases. RESULTS: The 444 participants were included in the study. The overall adherence to the use of iColon was 62.4%. The overall adherence to active ERAS items was 74.1%. Adherence to the use of iColon significantly impacted adherence to active ERAS items. The use of the application was negatively related with factors such as age, type of disease, and postoperative complications. In the postdischarge phase, low adherence to active ERAS items typically indicates an increased likelihood of readmission; however, the use of iColon correlated significantly with a reduction in the 30-day readmission rate. A survey regarding patient satisfaction and confidence in using iColon resulted in positive feedback in more than 94% of cases, while 92.7% reported better quality of care. CONCLUSION: Our findings suggest that digital health tools are beneficial and effective in the follow up of patients after early discharge. Our mobile application, iColon, represents user-friendly technology that is well-accepted. It has real-world implications in increasing adherence to active ERAS items, which results in an improvement in perceived quality of care by its users.

4.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298641

RESUMO

High-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics, proteomics, metabolomics and transcriptomics. Omics data have been individually investigated to understand the molecular bases of various diseases, but this may not be sufficient to fully capture the molecular mechanisms and the multilayer regulatory processes underlying complex diseases, especially cancer. To overcome this problem, several multi-omics integration methods have been introduced but a commonly agreed standard of analysis is still lacking. In this paper, we present MOUSSE, a novel normalization-free pipeline for unsupervised multi-omics integration. The main innovations are the use of rank-based subject-specific signatures and the use of such signatures to derive subject similarity networks. A separate similarity network was derived for each omics, and the resulting networks were then carefully merged in a way that considered their informative content. We applied it to analyze survival in ten different types of cancer. We produced a meaningful clusterization of the subjects and obtained a higher average classification score than ten state-of-the-art algorithms tested on the same data. As further validation, we extracted from the subject-specific signatures a list of relevant features used for the clusterization and investigated their biological role in survival. We were able to verify that, according to the literature, these features are highly involved in cancer progression and differential survival.

5.
Genes Nutr ; 10(6): 58, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26608884

RESUMO

Worldwide population is aging, and a large part of the growing burden associated with age-related conditions can be prevented or delayed by promoting healthy lifestyle and normalizing metabolic risk factors. However, a better understanding of the pleiotropic effects of available nutritional interventions and their influence on the multiple processes affected by aging is needed to select and implement the most promising actions. New methods of analysis are required to tackle the complexity of the interplay between nutritional interventions and aging, and to make sense of a growing amount of -omics data being produced for this purpose. In this paper, we review how various systems biology-inspired methods of analysis can be applied to the study of the molecular basis of nutritional interventions promoting healthy aging, notably caloric restriction and polyphenol supplementation. We specifically focus on the role that different versions of network analysis, molecular signature identification and multi-omics data integration are playing in elucidating the complex mechanisms underlying nutrition, and provide some examples on how to extend the application of these methods using available microarray data.

6.
Nucleic Acids Res ; 43(W1): W188-92, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25958391

RESUMO

SCUDO (Signature-based ClUstering for DiagnOstic purposes) is an online tool for the analysis of gene expression profiles for diagnostic and classification purposes. The tool is based on a new method for the clustering of profiles based on a subject-specific, as opposed to disease-specific, signature. Our approach relies on construction of a reference map of transcriptional signatures, from both healthy and affected subjects, derived from their respective mRNA or miRNA profiles. A diagnosis for a new individual can then be performed by determining the position of the individual's transcriptional signature on the map. The diagnostic power of our method has been convincingly demonstrated in an open scientific competition (SBV Improver Diagnostic Signature Challenge), scoring second place overall and first place in one of the sub-challenges.


Assuntos
Perfilação da Expressão Gênica/métodos , Software , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Análise por Conglomerados , Feminino , Humanos , Internet , MicroRNAs/metabolismo
7.
Biomed Res Int ; 2014: 192646, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054131

RESUMO

We describe a new signature definition and analysis method to be used as biomarker for early cancer detection. Our new approach is based on the construction of a reference map of transcriptional signatures of both healthy and cancer affected individuals using circulating miRNA from a large number of subjects. Once such a map is available, the diagnosis for a new patient can be performed by observing the relative position on the map of his/her transcriptional signature. To demonstrate its efficacy for this specific application we report the results of the application of our method to published datasets of circulating miRNA, and we quantify its performance compared to current state-of-the-art methods. A number of additional features make this method an ideal candidate for large-scale use, for example, as a mass screening tool for early cancer detection or for at-home diagnostics. Specifically, our method is minimally invasive (because it works well with circulating miRNA), it is robust with respect to lab-to-lab protocol variability and batch effects (it requires that only the relative ranking of expression value of miRNA in a profile be accurate not their absolute values), and it is scalable to a large number of subjects. Finally we discuss the need for HPC capability in a widespread application of our or similar methods.


Assuntos
Detecção Precoce de Câncer/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genética , Algoritmos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Testes Diagnósticos de Rotina , Feminino , Humanos , Software , Transcrição Gênica
8.
Bioinformatics ; 29(22): 2892-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23966112

RESUMO

MOTIVATION: After more than a decade since microarrays were used to predict phenotype of biological samples, real-life applications for disease screening and identification of patients who would best benefit from treatment are still emerging. The interest of the scientific community in identifying best approaches to develop such prediction models was reaffirmed in a competition style international collaboration called IMPROVER Diagnostic Signature Challenge whose results we describe herein. RESULTS: Fifty-four teams used public data to develop prediction models in four disease areas including multiple sclerosis, lung cancer, psoriasis and chronic obstructive pulmonary disease, and made predictions on blinded new data that we generated. Teams were scored using three metrics that captured various aspects of the quality of predictions, and best performers were awarded. This article presents the challenge results and introduces to the community the approaches of the best overall three performers, as well as an R package that implements the approach of the best overall team. The analyses of model performance data submitted in the challenge as well as additional simulations that we have performed revealed that (i) the quality of predictions depends more on the disease endpoint than on the particular approaches used in the challenge; (ii) the most important modeling factor (e.g. data preprocessing, feature selection and classifier type) is problem dependent; and (iii) for optimal results datasets and methods have to be carefully matched. Biomedical factors such as the disease severity and confidence in diagnostic were found to be associated with the misclassification rates across the different teams. AVAILABILITY: The lung cancer dataset is available from Gene Expression Omnibus (accession, GSE43580). The maPredictDSC R package implementing the approach of the best overall team is available at www.bioconductor.org or http://bioinformaticsprb.med.wayne.edu/.


Assuntos
Perfilação da Expressão Gênica/métodos , Técnicas de Diagnóstico Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenótipo , Doença/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética , Psoríase/diagnóstico , Psoríase/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética
9.
Nat Cell Biol ; 14(5): 477-87, 2012 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-22522171

RESUMO

Stem-cell functions require activation of stem-cell-intrinsic transcriptional programs and extracellular interaction with a niche microenvironment. How the transcriptional machinery controls residency of stem cells in the niche is unknown. Here we show that Id proteins coordinate stem-cell activities with anchorage of neural stem cells (NSCs) to the niche. Conditional inactivation of three Id genes in NSCs triggered detachment of embryonic and postnatal NSCs from the ventricular and vascular niche, respectively. The interrogation of the gene modules directly targeted by Id deletion in NSCs revealed that Id proteins repress bHLH-mediated activation of Rap1GAP, thus serving to maintain the GTPase activity of RAP1, a key mediator of cell adhesion. Preventing the elevation of the Rap1GAP level countered the consequences of Id loss on NSC-niche interaction and stem-cell identity. Thus, by preserving anchorage of NSCs to the extracellular environment, Id activity synchronizes NSC functions to residency in the specialized niche.


Assuntos
Antígenos de Neoplasias/fisiologia , Adesão Celular/fisiologia , Células-Tronco Neurais/citologia , Animais , Antígenos de Neoplasias/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Ativadoras de GTPase/genética , Camundongos
10.
Genome Biol ; 11(6): R64, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20569505

RESUMO

BACKGROUND: Dosage imbalance is responsible for several genetic diseases, among which Down syndrome is caused by the trisomy of human chromosome 21. RESULTS: To elucidate the extent to which the dosage imbalance of specific human chromosome 21 genes perturb distinct molecular pathways, we developed the first mouse embryonic stem (ES) cell bank of human chromosome 21 genes. The human chromosome 21-mouse ES cell bank includes, in triplicate clones, 32 human chromosome 21 genes, which can be overexpressed in an inducible manner. Each clone was transcriptionally profiled in inducing versus non-inducing conditions. Analysis of the transcriptional response yielded results that were consistent with the perturbed gene's known function. Comparison between mouse ES cells containing the whole human chromosome 21 (trisomic mouse ES cells) and mouse ES cells overexpressing single human chromosome 21 genes allowed us to evaluate the contribution of single genes to the trisomic mouse ES cell transcriptome. In addition, for the clones overexpressing the Runx1 gene, we compared the transcriptome changes with the corresponding protein changes by mass spectroscopy analysis. CONCLUSIONS: We determined that only a subset of genes produces a strong transcriptional response when overexpressed in mouse ES cells and that this effect can be predicted taking into account the basal gene expression level and the protein secondary structure. We showed that the human chromosome 21-mouse ES cell bank is an important resource, which may be instrumental towards a better understanding of Down syndrome and other human aneuploidy disorders.


Assuntos
Cromossomos Humanos Par 21/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Bancos de Tecidos , Animais , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Dosagem de Genes/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Proteoma/metabolismo , Recombinação Genética , Reprodutibilidade dos Testes , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA