Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 320(2): H699-H712, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306443

RESUMO

Brain capillary pericytes have been suggested to play a role in the regulation of cerebral blood flow under physiological and pathophysiological conditions. ATP has been shown to cause constriction of capillaries under ischemic conditions and suggested to be involved in the "no-reflow" phenomenon. To investigate the effects of extracellular ATP on pericyte cell contraction, we studied purinergic receptor activation of cultured bovine brain capillary pericytes. We measured intracellular Ca2+ concentration ([Ca2+]i) responses to purinergic agonists with the fluorescent indicators fura-2 and Cal-520 and estimated contraction of pericytes as relative change in cell area, using real-time confocal imaging. Addition of ATP caused an increase in cytosolic calcium and contraction of the brain capillary pericytes, both reversible and inhibited by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Furthermore, we demonstrated that ATP-induced contraction could be eliminated by intracellular calcium chelation with BAPTA, indicating that the contraction was mediated via purinergic P2-type receptor-mediated [Ca2+]i signaling. ATP stimulation induced inositol triphosphate signaling, consistent with the notion of P2Y receptor activation. Receptor profiling studies demonstrated the presence of P2Y1 and P2Y2 receptors, using ATP, UTP, ADP, and the subtype specific agonists MRS2365 (P2Y1) and 2-thio-UTP (P2Y2). Addition of specific P2X agonists only caused an [Ca2+]i increase at high concentrations, attributed to activation of inositol triphosphate signaling. Our results suggest that contraction of brain capillary pericytes in vitro by activation of P2Y-type purinergic receptors is caused by intracellular calcium release. This adds more mechanistic understanding of the role of pericytes in vessel constriction and points toward P2Y receptors as potential therapeutic targets.NEW & NOTEWORTHY The study concerns brain capillary pericytes, which have been suggested to play a role in the regulation of cerebral blood flow. We show that extracellular ATP causes contraction of primary brain pericytes by stimulation of purinergic receptors and subsequent release of intracellular Ca2+ concentration ([Ca2+]i). The contraction is mainly mediated through activation of P2Y-receptor subtypes, including P2Y1 and P2Y2. These findings add more mechanistic understanding of the role of pericytes in regulation of capillary blood flow. ATP was earlier suggested to be involved in capillary constriction in brain pathologies, and our study gives a detailed account of a part of this important mechanism.


Assuntos
Trifosfato de Adenosina/farmacologia , Encéfalo/irrigação sanguínea , Sinalização do Cálcio/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y/efeitos dos fármacos , Animais , Capilares/citologia , Bovinos , Células Cultivadas , Inositol 1,4,5-Trifosfato/metabolismo , Pericitos/metabolismo , Fenótipo , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Receptores Purinérgicos P2Y2/metabolismo
2.
J Vis Exp ; (148)2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31233031

RESUMO

Maintenance of normal brain function requires a sufficient and efficient supply of oxygen and nutrition by a complex network of vessels. However, the regulation of cerebral blood flow (CBF) is incompletely understood, especially at the capillary level. Two-photon microscopy is a powerful tool widely used to study CBF and its regulation. Currently, this field is limited by the lack of in vivo two-photon microscopy studies examining (1) CBF responses in three-dimensions, (2) conducted vascular responses, and (3) localized interventions within the vascular network. Here, we describe a 3D in vivo method using two-photon microscopy to study conducted vascular responses elicited by local ejection of ATP with a glass micro-pipette. Our method uses fast and repetitive hyperstack two-photon imaging providing precise diameter measurements by maximal intensity projection of the obtained images. Furthermore, we show that this method can also be used to study 3D astrocytic calcium responses. We also discuss the advantages and limitations of glass micro-pipette insertion and two-photon hyperstack imaging.


Assuntos
Trifosfato de Adenosina/metabolismo , Circulação Cerebrovascular , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Radioterapia Conformacional/instrumentação , Astrócitos/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cálcio/metabolismo , Humanos
3.
Neurocrit Care ; 30(3): 557-568, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30972614

RESUMO

BACKGROUND: Spreading depolarizations (SDs) occur in 50-60% of patients after surgical treatment of severe traumatic brain injury (TBI) and are independently associated with unfavorable outcomes. Here we performed a pilot study to examine the relationship between SDs and various types of intracranial lesions, progression of parenchymal damage, and outcomes. METHODS: In a multicenter study, fifty patients (76% male; median age 40) were monitored for SD by continuous electrocorticography (ECoG; median duration 79 h) following surgical treatment of severe TBI. Volumes of hemorrhage and parenchymal damage were estimated using unbiased stereologic assessment of preoperative, postoperative, and post-ECoG serial computed tomography (CT) studies. Neurologic outcomes were assessed at 6 months by the Glasgow Outcome Scale-Extended. RESULTS: Preoperative volumes of subdural and subarachnoid hemorrhage, but not parenchymal damage, were significantly associated with the occurrence of SDs (P's < 0.05). Parenchymal damage increased significantly (median 34 ml [Interquartile range (IQR) - 2, 74]) over 7 (5, 8) days from preoperative to post-ECoG CT studies. Patients with and without SDs did not differ in extent of parenchymal damage increase [47 ml (3, 101) vs. 30 ml (- 2, 50), P = 0.27], but those exhibiting the isoelectric subtype of SDs had greater initial parenchymal damage and greater increases than other patients (P's < 0.05). Patients with temporal clusters of SDs (≥ 3 in 2 h; n = 10 patients), which included those with isoelectric SDs, had worse outcomes than those without clusters (P = 0.03), and parenchymal damage expansion also correlated with worse outcomes (P = 0.01). In multivariate regression with imputation, both clusters and lesion expansion were significant outcome predictors. CONCLUSIONS: These results suggest that subarachnoid and subdural blood are important primary injury factors in provoking SDs and that clustered SDs and parenchymal lesion expansion contribute independently to worse patient outcomes. These results warrant future prospective studies using detailed quantification of TBI lesion types to better understand the relationship between anatomic and physiologic measures of secondary injury.


Assuntos
Contusão Encefálica/patologia , Contusão Encefálica/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Hematoma Subdural Agudo/patologia , Hematoma Subdural Agudo/fisiopatologia , Hemorragia Subaracnoídea Traumática/patologia , Hemorragia Subaracnoídea Traumática/fisiopatologia , Adulto , Contusão Encefálica/diagnóstico por imagem , Eletrocorticografia , Feminino , Seguimentos , Escala de Resultado de Glasgow , Hematoma Subdural Agudo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Índice de Gravidade de Doença , Hemorragia Subaracnoídea Traumática/diagnóstico por imagem , Tomografia Computadorizada por Raios X
4.
Proc Natl Acad Sci U S A ; 115(25): E5796-E5804, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866853

RESUMO

Functional neuroimaging, such as fMRI, is based on coupling neuronal activity and accompanying changes in cerebral blood flow (CBF) and metabolism. However, the relationship between CBF and events at the level of the penetrating arterioles and capillaries is not well established. Recent findings suggest an active role of capillaries in CBF control, and pericytes on capillaries may be major regulators of CBF and initiators of functional imaging signals. Here, using two-photon microscopy of brains in living mice, we demonstrate that stimulation-evoked increases in synaptic activity in the mouse somatosensory cortex evokes capillary dilation starting mostly at the first- or second-order capillary, propagating upstream and downstream at 5-20 µm/s. Therefore, our data support an active role of pericytes in cerebrovascular control. The gliotransmitter ATP applied to first- and second-order capillaries by micropipette puffing induced dilation, followed by constriction, which also propagated at 5-20 µm/s. ATP-induced capillary constriction was blocked by purinergic P2 receptors. Thus, conducted vascular responses in capillaries may be a previously unidentified modulator of cerebrovascular function and functional neuroimaging signals.


Assuntos
Capilares/fisiologia , Circulação Cerebrovascular/fisiologia , Córtex Somatossensorial/irrigação sanguínea , Vasoconstrição/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Arteríolas/metabolismo , Arteríolas/fisiologia , Capilares/metabolismo , Feminino , Neuroimagem Funcional/métodos , Masculino , Camundongos , Pericitos/metabolismo , Pericitos/fisiologia , Receptores Purinérgicos P2/metabolismo , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/fisiologia , Vasodilatação/fisiologia
5.
Sci Rep ; 7(1): 12480, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970491

RESUMO

Nucleic acids, which constitute the genetic material of all organisms, are continuously exposed to endogenous and exogenous damaging agents, representing a significant challenge to genome stability and genome integrity over the life of a cell or organism. Unrepaired DNA lesions, such as single- and double-stranded DNA breaks (SSBs and DSBs), and single-stranded gaps can block progression of the DNA replication fork, causing replicative stress and/or cell cycle arrest. However, translesion synthesis (TLS) DNA polymerases, such as Rev1, have the ability to bypass some DNA lesions, which can circumvent the process leading to replication fork arrest and minimize replicative stress. Here, we show that Rev1-deficiency in mouse embryo fibroblasts or mouse liver tissue is associated with replicative stress and mitochondrial dysfunction. In addition, Rev1-deficiency is associated with high poly(ADP) ribose polymerase 1 (PARP1) activity, low endogenous NAD+, low expression of SIRT1 and PGC1α and low adenosine monophosphate (AMP)-activated kinase (AMPK) activity. We conclude that replication stress via Rev1-deficiency contributes to metabolic stress caused by compromized mitochondrial function via the PARP-NAD+-SIRT1-PGC1α axis.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias Hepáticas/genética , Nucleotidiltransferases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Poli(ADP-Ribose) Polimerases/genética , Sirtuína 1/genética , Animais , DNA Polimerase Dirigida por DNA , Embrião de Mamíferos , Feminino , Fibroblastos/citologia , Fibroblastos/enzimologia , Regulação da Expressão Gênica , Fígado/enzimologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , NAD/metabolismo , Nucleotidiltransferases/deficiência , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Cultura Primária de Células , Transdução de Sinais , Sirtuína 1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
J Neurosci ; 37(9): 2403-2414, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137973

RESUMO

Cerebral blood flow (CBF) is controlled by arterial blood pressure, arterial CO2, arterial O2, and brain activity and is largely constant in the awake state. Although small changes in arterial CO2 are particularly potent to change CBF (1 mmHg variation in arterial CO2 changes CBF by 3%-4%), the coupling mechanism is incompletely understood. We tested the hypothesis that astrocytic prostaglandin E2 (PgE2) plays a key role for cerebrovascular CO2 reactivity, and that preserved synthesis of glutathione is essential for the full development of this response. We combined two-photon imaging microscopy in brain slices with in vivo work in rats and C57BL/6J mice to examine the hemodynamic responses to CO2 and somatosensory stimulation before and after inhibition of astrocytic glutathione and PgE2 synthesis. We demonstrate that hypercapnia (increased CO2) evokes an increase in astrocyte [Ca2+]i and stimulates COX-1 activity. The enzyme downstream of COX-1 that synthesizes PgE2 (microsomal prostaglandin E synthase-1) depends critically for its vasodilator activity on the level of glutathione in the brain. We show that, when glutathione levels are reduced, astrocyte calcium-evoked release of PgE2 is decreased and vasodilation triggered by increased astrocyte [Ca2+]iin vitro and by hypercapnia in vivo is inhibited. Astrocyte synthetic pathways, dependent on glutathione, are involved in cerebrovascular reactivity to CO2 Reductions in glutathione levels in aging, stroke, or schizophrenia could lead to dysfunctional regulation of CBF and subsequent neuronal damage.SIGNIFICANCE STATEMENT Neuronal activity leads to the generation of CO2, which has previously been shown to evoke cerebral blood flow (CBF) increases via the release of the vasodilator PgE2 We demonstrate that hypercapnia (increased CO2) evokes increases in astrocyte calcium signaling, which in turn stimulates COX-1 activity and generates downstream PgE2 production. We demonstrate that astrocyte calcium-evoked production of the vasodilator PgE2 is critically dependent on brain levels of the antioxidant glutathione. These data suggest a novel role for astrocytes in the regulation of CO2-evoked CBF responses. Furthermore, these results suggest that depleted glutathione levels, which occur in aging and stroke, will give rise to dysfunctional CBF regulation and may result in subsequent neuronal damage.


Assuntos
Astrócitos/metabolismo , Hipocampo/patologia , Hipercapnia/patologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Animais Recém-Nascidos , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Clonidina/farmacologia , Cicloleucina/análogos & derivados , Cicloleucina/farmacologia , Ciclo-Oxigenase 1/metabolismo , Dinoprostona/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Técnicas In Vitro , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Norepinefrina/farmacologia , Ratos , Ratos Wistar , Vibrissas/inervação
7.
J Cereb Blood Flow Metab ; 37(5): 1820-1828, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27107027

RESUMO

Cortical spreading depression is associated with activation of NMDA receptors, which interact with the postsynaptic density protein 95 (PSD-95) that binds to nitric oxide synthase (nNOS). Here, we tested whether inhibition of the nNOS/PSD-95/NMDA receptor complex formation by anti-ischemic compound, UCCB01-144 (Tat- N-dimer) ameliorates the persistent effects of cortical spreading depression on cortical function. Using in vivo two-photon microscopy in somatosensory cortex in mice, we show that fluorescently labelled Tat- N-dimer readily crosses blood-brain barrier and accumulates in nerve cells during the first hour after i.v. injection. The Tat- N-dimer suppressed stimulation-evoked synaptic activity by 2-20%, while cortical blood flow and cerebral oxygen metabolic (CMRO2) responses were preserved. During cortical spreading depression, the Tat- N-dimer reduced the average amplitude of the negative shift in direct current potential by 33% (4.1 mV). Furthermore, the compound diminished the average depression of spontaneous electrocorticographic activity by 11% during first 40 min of post-cortical spreading depression recovery, but did not mitigate the suppressing effect of cortical spreading depression on cortical blood flow and CMRO2. We suggest that uncoupling of PSD-95 from NMDA receptors reduces overall neuronal excitability and the amplitude of the spreading depolarization wave. These findings may be of interest for understanding the neuroprotective effects of the nNOS/PSD-95 uncoupling in stroke.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Proteína 4 Homóloga a Disks-Large , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacocinética , Peptídeos/farmacocinética , Potenciais Sinápticos/efeitos dos fármacos
8.
Front Aging Neurosci ; 8: 300, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018213

RESUMO

Importance: Cognitive skills are known to decline through the lifespan with large individual differences. The molecular mechanisms for this decline are incompletely understood. Although leukocyte telomere length provides an index of cellular age that predicts the incidence of age-related diseases, it is unclear whether there is an association between cognitive decline and leukocyte telomere length. Objective: To examine the association between changes in cognitive function during adult life and leukocyte telomere length after adjusting for confounding factors such as education, mental health and life style. Design, Setting, and Participants: Two groups of men with negative (n = 97) and positive (n = 93) change in cognitive performance were selected from a birth cohort of 1985 Danish men born in 1953. Cognitive performance of each individual was assessed at age ~20 and 56 years. Leukocyte telomere length at age ~58 was measured using qPCR. Linear regression models were used to investigate the association between cognitive function and leukocyte telomere length. Results: Men with negative change in cognitive performance during adult life had significantly shorter mean leukocyte telomere length than men with positive change in cognitive performance (unadjusted difference ß = -0.09, 95% CI -0.16 to -0.02, p = 0.02). This association remained significant after adjusting for smoking, alcohol consumption, leisure time activity, body mass index (BMI) and cholesterol (adjusted difference ß = -0.09, 95% CI -0.17 to -0.01, p = 0.02) but was non-significant after adjusting for smoking, alcohol consumption, leisure time activity, BMI, cholesterol, current cognitive function, depression and education (adjusted difference ß = -0.07, 95% CI -0.16 to -0.01, p = 0.08). Conclusion and Relevance: Preclinical cognitive changes may be associated with leukocyte telomere length.

9.
PLoS One ; 11(3): e0152612, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27029014

RESUMO

BACKGROUND: The cell-cycle inhibitor and tumor suppressor cyclin dependent kinase inhibitor, p16ink4a, is one of the two gene products of the ink4a/ARF (cdkn2a) locus on chromosome 9q21. Up-regulation of p16ink4a has been linked to cellular senescence, and findings from studies on different mammalian tissues suggest that p16ink4a may be a biomarker of organismal versus chronological age. OBJECTIVE: The aim of this study was to examine the immunolocalization pattern of p16ink4a in human labial salivary gland (LSG) tissue, and to analyze whether its expression level in LSGs is a peripheral correlate of cognitive decline in late midlife. METHODS: The present study was a part of a study of causes and predictors of cognitive decline in middle-aged men in a Danish birth cohort. It is based on data from 181 male participants from the Danish Metropolit birth cohort, born in 1953, who were examined for age-associated alterations in cognition, dental health, and morphological and autonomic innervation characteristics of the LSGs. The participants were allocated to two groups based on the relative change in cognitive performance from young adulthood to late midlife. LSG biopsies were analyzed by qRT-PCR for the expression level of p16ink4a. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded sections of LSGs. RESULTS: p16ink4a immunoreactivity was observed in LSG ductal, myoepithelial, and stromal cells, but not in acinar cells. The mean relative expression of p16ink4a in LSGs was higher in the group of participants with decline in cognitive performance. A logistic regression analysis revealed that the relative p16 expression was predictive of the participant's group assignment. A negative correlation was found between relative p16ink4a expression and the participant's standardized regression residuals from early adulthood to late midlife cognitive performance scores. CONCLUSIONS: p16ink4a expression in human LSGs may constitute a potential peripheral correlate of cognitive decline. Human labial salivary glands seem suitable for studies on organismal as opposed to chronological age.


Assuntos
Envelhecimento Cognitivo/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Regulação da Expressão Gênica/fisiologia , Glândulas Salivares/metabolismo , Biomarcadores/metabolismo , Dinamarca , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade
10.
Sci Rep ; 6: 22047, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911348

RESUMO

Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na(+)/K(+)-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2(+/G301R)) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2(G301R/G301R) E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2(+/G301R) male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2(+/G301R) behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2.


Assuntos
Ácido Glutâmico/metabolismo , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Mutação , Fenótipo , Estimulação Acústica , Animais , Comportamento Animal , Transporte Biológico , Circulação Cerebrovascular , Biologia Computacional/métodos , Depressão Alastrante da Atividade Elétrica Cortical/genética , Modelos Animais de Doenças , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Enxaqueca com Aura/diagnóstico , Enxaqueca com Aura/tratamento farmacológico , Atividade Motora , Tempo de Reação , ATPase Trocadora de Sódio-Potássio/genética , Estresse Fisiológico
11.
J Cereb Blood Flow Metab ; 33(2): 161-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23211964

RESUMO

Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.


Assuntos
Envelhecimento/imunologia , Sinalização do Cálcio , Cálcio/metabolismo , Hipóxia Encefálica/metabolismo , Neuroglia/metabolismo , Oxigênio/metabolismo , Células de Purkinje/metabolismo , Trifosfato de Adenosina/metabolismo , Envelhecimento/patologia , Animais , Hipóxia Encefálica/patologia , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Neuroglia/patologia , Células de Purkinje/patologia
12.
J Cereb Blood Flow Metab ; 31(1): 17-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21045864

RESUMO

Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence to suggest that CSD is involved in the mechanism of migraine, stroke, subarachnoid hemorrhage and traumatic brain injury. The implications of these findings are widespread and suggest that intrinsic brain mechanisms have the potential to worsen the outcome of cerebrovascular episodes or brain trauma. The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD as a pathophysiological mechanism for this group of acute neurological disorders. The findings have implications for monitoring and treatment of patients with acute brain disorders in the intensive care unit. Drawing on the large body of experimental findings from animal studies of CSD obtained during decades we suggest treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves.


Assuntos
Lesões Encefálicas/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Hemorragias Intracranianas/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Hemorragia Subaracnóidea/fisiopatologia , Circulação Cerebrovascular/fisiologia , Fenômenos Eletrofisiológicos , Metabolismo Energético/fisiologia , Humanos
13.
Brain ; 129(Pt 12): 3224-37, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17067993

RESUMO

Progressive ischaemic damage in animals is associated with spreading mass depolarizations of neurons and astrocytes, detected as spreading negative slow voltage variations. Speculation on whether spreading depolarizations occur in human ischaemic stroke has continued for the past 60 years. Therefore, we performed a prospective multicentre study assessing incidence and timing of spreading depolarizations and delayed ischaemic neurological deficit (DIND) in patients with major subarachnoid haemorrhage (SAH) requiring aneurysm surgery. Spreading depolarizations were recorded by electrocorticography with a subdural electrode strip placed on cerebral cortex for up to 10 days. A total of 2110 h recording time was analysed. The clinical state was monitored every 6 h. Delayed infarcts after SAH were verified by serial CT scans and/or MRI. Electrocorticography revealed 298 spreading depolarizations in 13 of the 18 patients (72%). A clinical DIND was observed in seven patients 7.8 days (7.3, 8.2) after SAH. DIND was time-locked to a sequence of recurrent spreading depolarizations in every single case (positive and negative predictive values: 86 and 100%, respectively). In four patients delayed infarcts developed in the recording area. As in the ischaemic penumbra of animals, delayed infarction was preceded by progressive prolongation of the electrocorticographic depression periods associated with spreading depolarizations to >60 min in each case. This study demonstrates that spreading depolarizations have a high incidence in major SAH and occur in ischaemic stroke. Repeated spreading depolarizations with prolonged depression periods are an early indicator of delayed ischaemic brain damage after SAH. In view of experimental evidence and the present clinical results, we suggest that spreading depolarizations with prolonged depressions are a promising target for treatment development in SAH and ischaemic stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Córtex Cerebral/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Hemorragia Subaracnóidea/fisiopatologia , Adulto , Infarto Encefálico/diagnóstico por imagem , Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Angiografia Cerebral/métodos , Córtex Cerebral/irrigação sanguínea , Feminino , Humanos , Angiografia por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/patologia , Tomografia Computadorizada por Raios X/métodos
14.
Brain ; 129(Pt 3): 778-90, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16364954

RESUMO

Electrocorticographic (ECoG) activity was recorded for up to 129 h from 12 acutely brain-injured human patients using six platinum electrodes placed near foci of damaged cortical tissue. The method probes ECoG activity in the immediate vicinity of the injured cortex and in adjacent supposedly healthy tissue. Six out of twelve patients displayed a total of 73 spontaneous episodes of spreading depression of the ECoG. Of the remaining 6 patients 1 displayed an episode of synchronous depression of ECoG during surgery. Using the same electrodes we also measured the slow potential changes (SPC) (0.005-0.05 Hz) to test the hypothesis that the ECoG depressions were identical to Leao's cortical spreading depression (CSD), and to be able to record peri-infarct depolarisations (PIDs) in electrically 'silent' cortical tissue. Changes in the SPC indicate depolarization of brain tissue. For the analysis, the SPCs were enhanced by calculating the time integral of the ECoG signal. Spreading ECoG depressions were accompanied at every single recording site by stereotyped SPCs, which spread across the cortical mantle at 3.3 (0.41-10) mm/min (median, range), i.e. at the same speed of spread as the depression of the ECoG activity. The amplitude of the SPCs was 0.06-3 mV. In 4 out of 6 patients the ECoG recovered spontaneously. In 2 patients we subsequently recorded recurrent SPCs, but without recovery of the initial ECoG background activity until 2-5 h later. This represents the first direct recording of PIDs in acutely injured human brain. Evidence from this and our previous study of 14 brain-injured patients suggests that CSDs in acute brain disorders occur at higher incidence in patients <30 years (83%) than above (33%). CSD was recorded in 4 out of 5 traumatic brain injury patients, and in 2 out of 7 patients with spontaneous haemorrhages. We conclude that the spreading ECoG depressions recorded in patients are identical to CSDs recorded in animal experiments. We furthermore provide direct electrophysiological evidence for the existence of PIDs and hence a penumbra in the human brain. We hypothesize that the depolarization events might contribute to tissue damage in acute disorders in the human brain.


Assuntos
Lesões Encefálicas/fisiopatologia , Córtex Cerebral/lesões , Depressão Alastrante da Atividade Elétrica Cortical , Hemorragias Intracranianas/fisiopatologia , Adulto , Idoso , Lesões Encefálicas/patologia , Córtex Cerebral/fisiopatologia , Eletroencefalografia , Feminino , Humanos , Hemorragia Intracraniana Traumática/patologia , Hemorragia Intracraniana Traumática/fisiopatologia , Hemorragias Intracranianas/patologia , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Fatores de Tempo
15.
J Cereb Blood Flow Metab ; 25(3): 402-13, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15703701

RESUMO

The pathophysiology of peri-lesion boundary zones in acute brain injury is highly dynamic, and it is now clear that spreading-depression-like events occur frequently in areas of cerebral cortex adjacent to contusions in the injured human brain. An automated method to assay microdialysate from peri-lesion cerebral cortex in 11 patients with intracranial haematomas requiring surgery was used. Perfusate (2 microL/min) flowed directly into a flow-injection system for assay of glucose and lactate at intervals typically of 30 secs each. Four channels of electrocorticogram (ECoG) were recorded from a subdural strip adjacent to the catheter. Several patterns of change in metabolites were identified in different time domains. Overall, the number of transient lactate events was significantly correlated with the number of glucose events (r2=0.48, P=0.027, n=10). Progressive reduction in dialysate glucose was very closely correlated with the aggregate number of ECoG events (r2=0.76, P=0.0004, n=11). It is proposed that the recently documented adverse impact of low dialysate glucose on clinical outcome may be because of recurrent, spontaneous spreading-depression-like events in the perilesion cortex.


Assuntos
Lesões Encefálicas/metabolismo , Córtex Cerebral/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical , Glucose/metabolismo , Ácido Láctico/metabolismo , Microdiálise/métodos , Adulto , Idoso , Encéfalo/fisiopatologia , Edema Encefálico/metabolismo , Edema Encefálico/fisiopatologia , Córtex Cerebral/patologia , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Microdiálise/instrumentação , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Fatores de Tempo
16.
J Cereb Blood Flow Metab ; 24(7): 713-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15241179

RESUMO

In acute brain disorders, elimination of the excitatory output from an injured brain region reduces activity in connecting brain regions remote from the lesion site (i.e., diaschisis). The authors examined the effect of functional ablation of the left cerebral cortex by cortical spreading depression (CSD) or topical application of tetrodotoxin on single cell spiking activity, baseline CBF, and neurovascular coupling in the right rat sensory cortex. CSD or tetrodotoxin in left cortex reduced the right cortical spontaneous spike rate by 36% and 45%, respectively. Baseline CBF in the right cortex was unaffected by a left-sided CSD, but decreased by 12% for left cortical application of tetrodotoxin. This suggested dissociation between spontaneous spiking activity and basal CBF. Left in-fraorbital nerve stimulation evoked local field potentials in right cerebral cortex that were reduced in amplitude by 19% for left CSD and by 23% for left tetrodotoxin application. The corresponding declines in the evoked CBF responses were 42% for CSD and 23% for tetrodotoxin. Vascular reactivity to adenosine remained unchanged in right cortex. Thus, transhemispheric diaschisis produced a pronounced decrease in the spontaneous spike rate accompanied by no reduction or a small reduction in basal CBF, and an attenuation in amplitudes of evoked synaptic responses and corresponding rises in CBF. The findings suggest that disturbed neurovascular coupling may contribute to the disturbance in brain function in acute transhemispheric diaschisis.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiologia , Lateralidade Funcional , Adenosina/administração & dosagem , Animais , Córtex Cerebral/cirurgia , Depressão Alastrante da Atividade Elétrica Cortical , Estimulação Elétrica , Eletrofisiologia , Fluxometria por Laser-Doppler , Masculino , Microeletrodos , Neurônios/fisiologia , Ratos , Ratos Wistar , Tetrodotoxina/administração & dosagem
17.
Proc Natl Acad Sci U S A ; 100(26): 16000-5, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14673091

RESUMO

Functional neuroimaging relies on the robust coupling between neuronal activity, metabolism and cerebral blood flow (CBF) to map the brain, but the physiological basis of the neuroimaging signals is still not well understood. Here we applied a pharmacological approach to separate spiking activity, synaptic activity, and the accompanying changes in CBF in rat cerebellar cortex. We report that tonic synaptic inhibition achieved by topical application of gamma-aminobutyric acid type A (GABAA) (muscimol) or GABAB (baclofen) receptor agonists abolished or reduced spontaneous Purkinje cell spiking activity without affecting basal CBF. The magnitude of CBF responses evoked by climbing fiber stimulation decreased gradually over time after exposure to muscimol, being more pronounced in the superficial than in the deep cortical layers. We provide direct evidence in favor of a laminar-specific regulation of CBF in deep cortical layers, independent of dilatation of surface vessels. With prolonged exposure to muscimol, activity-dependent CBF increments disappeared, despite preserved cerebrovascular reactivity to adenosine and preserved local field potentials (LFP). This dissociation of CBF and LFPs suggests that CBF responses are independent of extracellular synaptic currents that generate LFPs. Our work implies that neuronal and vascular signals evoked by glutamatergic pathways are sensitive to synaptic inhibition, and that local mechanisms independent of transmembrane synaptic currents adjust flow to synaptic activity in distinct cortical layers. Our results provide fundamental insights into the functional regulation of blood flow, showing important interference of GABAA receptors in translating excitatory input into blood flow responses.


Assuntos
Cerebelo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Sinapses/fisiologia , Animais , Baclofeno/farmacologia , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Estimulação Elétrica , Agonistas GABAérgicos/farmacologia , Fluxometria por Laser-Doppler , Masculino , Muscimol/farmacologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/fisiologia , Ratos , Ratos Wistar , Receptores de AMPA/fisiologia , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Receptores de GABA-B/efeitos dos fármacos , Receptores de GABA-B/fisiologia , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA