Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 337: 117728, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940601

RESUMO

Iron (Fe) rich by-products can be added to lake or river sediments to immobilise phosphate (PO4) and lower eutrophication risks. These Fe materials differ in mineralogy and specific surface area, hence differing in PO4 sorption capacity and stability under reducing conditions. This study was set up to identify key properties of these amendments in their capacity to immobilise PO4 in sediments. Eleven Fe rich by-products, collected from drinking water treatment plants and acid mine drainage, were characterised. The PO4 adsorption to these by-products was first determined under aerobic conditions and the solid-liquid distribution coefficient KD for PO4 correlated strongly to oxalate extractable Fe content. A static sediment-water incubation test was subsequently used to evaluate the redox stability of these by-products. The reductive processes gradually released Fe to solution and more Fe was release from the amended than from the control sediments. The total Fe release to solution was positively related to ascorbate reducible Fe fractions in the by-products, suggesting that such fractions indicate potential loss of P retention capacity on the long term. The final PO4 concentration in the overlying water was 5.6 mg P L-1 in the control and was successfully lowered by factor 30-420 depending on the by-product. The factor by which solution PO4 was reduced in Fe treatments increased with increasing KD determined under aerobic conditions. This study suggests that efficient by-products to trap P in sediments are characterised by a high oxalate Fe content and a low reducible Fe fraction.


Assuntos
Fosfatos , Poluentes Químicos da Água , Ferro/análise , Fósforo , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Lagos , Oxirredução
2.
Sci Total Environ ; 649: 120-127, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30173024

RESUMO

Recent cadmium (Cd) regulation in chocolate threatens the sustainability of cacao production in Southwest America. Cadmium contamination in cacao beans has not been assessed at a country level. A nationwide survey was conducted in Ecuador to identify the spatial distribution of Cd in cacao beans, as well as soil and agronomic factors involved. Paired soil and plant samples (pods and leaves) were collected at 560 locations. Information on agronomic practices was obtained through a prepared questionnaire for farmers. Total soil Cd averaged 0.44 mg kg-1 which is typical for young and non-polluted soils. Mean Cd concentration in peeled beans was 0.90 mg kg-1 and 45% of samples exceeded the 0.60 mg kg-1 threshold. Bean Cd hotspots were identified in some areas in seven provinces. Multivariate regression analysis showed that bean Cd concentrations increased with increasing total soil Cd and with decreasing soil pH, oxalate-extractable manganese (Mnox) and organic carbon (OC) (R2 = 0.65), suggesting that Cd solubility in soil mainly affects Cd uptake. Bean Cd concentration decreased a factor of 1.4 as the age of the orchard increased from 4 to 40 years. Bean Cd concentration was inconsistently affected by genotype (CCN-51 vs. Nacional), pruning or application of fertilizers. It is concluded that the relatively larger bean Cd concentrations in Ecuador are related to the high Cd uptake capacity of the plants combined with their cultivation on young soils, instead of Cd depleted weathered soils. Mitigation strategies should consider the application of amendments to modify such soil properties to lower soil Cd availability. There is scope for genetic mitigation strategy to reduce bean Cd, but this needs to be properly investigated.


Assuntos
Agricultura/métodos , Cacau/química , Cádmio/análise , Poluentes do Solo/análise , Solo/química , Equador , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA