Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Eur J Hum Genet ; 32(7): 813-818, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38605124

RESUMO

Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 20 , Hiperinsulinismo Congênito , Fator 3-beta Nuclear de Hepatócito , Humanos , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/patologia , Cromossomos Humanos Par 20/genética , Feminino , Masculino , Sequências Reguladoras de Ácido Nucleico
2.
J Clin Endocrinol Metab ; 108(3): 680-687, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36239000

RESUMO

CONTEXT: Congenital hyperinsulinism (HI) is characterized by inappropriate insulin secretion despite low blood glucose. Persistent HI is often monogenic, with the majority of cases diagnosed in infancy. Less is known about the contribution of monogenic forms of disease in those presenting in childhood. OBJECTIVE: We investigated the likelihood of finding a genetic cause in childhood-onset HI and explored potential factors leading to later age at presentation of disease. METHODS: We screened known disease-causing genes in 1848 individuals with HI, referred for genetic testing as part of routine clinical care. Individuals were classified as infancy-onset (diagnosed with HI < 12 months of age) or childhood-onset (diagnosed at age 1-16 years). We assessed clinical characteristics and the genotypes of individuals with monogenic HI diagnosed in childhood to gain insights into the later age at diagnosis of HI in these children. RESULTS: We identified the monogenic cause in 24% (n = 42/173) of the childhood-onset HI cohort; this was significantly lower than the proportion of genetic diagnoses in infancy-onset cases (74.5% [n = 1248/1675], P < 0.00001). Most (75%) individuals with genetically confirmed childhood-onset HI were diagnosed before 2.7 years, suggesting these cases represent the tail end of the normal distribution in age at diagnosis. This is supported by the finding that 81% of the variants identified in the childhood-onset cohort were detected in those diagnosed in infancy. CONCLUSION: We have shown that monogenic HI is an important cause of hyperinsulinism presenting outside of infancy. Genetic testing should be considered in children with persistent hyperinsulinism, regardless of age at diagnosis.


Assuntos
Hiperinsulinismo Congênito , Hiperinsulinismo , Hipoglicemia , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Glicemia , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Testes Genéticos , Hiperinsulinismo/diagnóstico , Hiperinsulinismo/genética , Hiperinsulinismo/complicações , Pancreatopatias/genética , Hipoglicemia/diagnóstico , Hipoglicemia/genética
3.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333503

RESUMO

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Assuntos
Hiperinsulinismo Congênito , Células Secretoras de Insulina , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética
4.
Pediatr Diabetes ; 23(4): 457-461, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35294086

RESUMO

BACKGROUND: Hyperinsulinism results from inappropriate insulin secretion during hypoglycaemia. Down syndrome is causally linked to a number of endocrine disorders including Type 1 diabetes and neonatal diabetes. We noted a high number of individuals with Down syndrome referred for hyperinsulinism genetic testing, and therefore aimed to investigate whether the prevalence of Down syndrome was increased in our hyperinsulinism cohort compared to the population. METHODS: We identified individuals with Down syndrome referred for hyperinsulinism genetic testing to the Exeter Genomics Laboratory between 2008 and 2020. We sequenced the known hyperinsulinism genes in all individuals and investigated their clinical features. RESULTS: We identified 11 individuals with Down syndrome in a cohort of 2011 patients referred for genetic testing for hyperinsulinism. This represents an increased prevalence compared to the population (2.5/2011 expected vs. 11/2011 observed, p = 6.8 × 10-5 ). A pathogenic ABCC8 mutation was identified in one of the 11 individuals. Of the remaining 10 individuals, five had non-genetic risk factors for hyperinsulinism resulting from the Down syndrome phenotype: intrauterine growth restriction, prematurity, gastric/oesophageal surgery, and asparaginase treatment for leukaemia. For five individuals no risk factors for hypoglycaemia were reported although two of these individuals had transient hyperinsulinism and one was lost to follow-up. CONCLUSIONS: Down syndrome is more common in patients with hyperinsulinism than in the population. This is likely due to an increased burden of non-genetic risk factors resulting from the Down syndrome phenotype. Down syndrome should not preclude genetic testing as coincidental monogenic hyperinsulinism and Down syndrome is possible.


Assuntos
Hiperinsulinismo Congênito , Síndrome de Down , Hiperinsulinismo Congênito/complicações , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/epidemiologia , Síndrome de Down/complicações , Síndrome de Down/diagnóstico , Síndrome de Down/epidemiologia , Testes Genéticos , Humanos , Mutação , Encaminhamento e Consulta , Fatores de Risco
5.
Eur J Endocrinol ; 185(6): 813-818, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34633981

RESUMO

OBJECTIVE: Mutations in the KATP channel genes, ABCC8 and KCNJ11, are the most common cause of congenital hyperinsulinism. The diagnosis of KATP-hyperinsulinism is important for the clinical management of the condition. We aimed to determine the clinical features that help to identify KATP-hyperinsulinism at diagnosis. DESIGN: We studied 761 individuals with KATP-hyperinsulinism and 862 probands with hyperinsulinism of unknown aetiology diagnosed before 6 months of age. All were referred as part of routine clinical care. METHODS: We compared the clinical features of KATP-hyperinsulinism and unknown hyperinsulinism cases. We performed logistic regression and receiver operator characteristic (ROC) analysis to identify the features that predict KATP-hyperinsulinism. RESULTS: Higher birth weight, diazoxide unresponsiveness and diagnosis in the first week of life were independently associated with KATP-hyperinsulinism (adjusted odds ratio: 4.5 (95% CI: 3.4-5.9), 0.09 (0.06-0.13) and 3.3 (2.0-5.0) respectively). Birth weight and diazoxide unresponsiveness were additive and highly discriminatory for identifying KATP-hyperinsulinism (ROC area under the curve for birth weight 0.80, diazoxide responsiveness 0.77, and together 0.88, 95% CI: 0.85-0.90). In this study, 86% born large for gestation and 78% born appropriate for gestation and who did not respond to diazoxide treatment had KATP-hyperinsulinism. In contrast, of those individuals born small for gestation, none who were diazoxide responsive and only 4% of those who were diazoxide unresponsive had KATP-hyperinsulinism. CONCLUSIONS: Individuals with hyperinsulinism born appropriate or large for gestation and unresponsive to diazoxide treatment are most likely to have an ABCC8 or KCNJ11 mutation. These patients should be prioritised for genetic testing of KATP channel genes.


Assuntos
Peso ao Nascer , Hiperinsulinismo Congênito/genética , Diazóxido/administração & dosagem , Canais KATP/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/genética , Hiperinsulinismo Congênito/diagnóstico , Feminino , Humanos , Recém-Nascido , Masculino
6.
Hum Mutat ; 41(5): 884-905, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027066

RESUMO

The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the ß-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.


Assuntos
Hiperinsulinismo Congênito/genética , Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/genética , Hiperinsulinismo Congênito/diagnóstico , Diabetes Mellitus/diagnóstico , Mutação com Ganho de Função , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Recém-Nascido , Mutação com Perda de Função
7.
PLoS One ; 15(2): e0228417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027664

RESUMO

Congenital hyperinsulinism (CHI) is a significant cause of hypoglycaemia in neonates and infants with the potential for permanent neurologic injury. Accurate calculations of the incidence of rare diseases such as CHI are important as they inform health care planning and can aid interpretation of genetic testing results when assessing the frequency of variants in large-scale, unselected sequencing databases. Whilst minimal incidence rates have been calculated for four European countries, the incidence of CHI in the UK is not known. In this study we have used referral rates to a central laboratory for genetic testing and annual birth rates from census data to calculate the minimal incidence of CHI within the UK from 2007 to 2016. CHI was diagnosed in 278 individuals based on inappropriately detectable insulin and/or C-peptide measurements at the time of hypoglycaemia which persisted beyond 6 months of age. From these data, we have calculated a minimum incidence of 1 in 28,389 live births for CHI in the UK. This is comparable to estimates from other outbred populations and provides an accurate estimate that will aid both health care provision and interpretation of genetic results, which will help advance our understanding of CHI.


Assuntos
Hiperinsulinismo Congênito/epidemiologia , Testes Genéticos/estatística & dados numéricos , Padrões de Prática Médica/estatística & dados numéricos , Doenças Raras/epidemiologia , Encaminhamento e Consulta/estatística & dados numéricos , Pré-Escolar , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/cirurgia , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Nascido Vivo/epidemiologia , Masculino , Triagem Neonatal/métodos , Pancreatectomia/estatística & dados numéricos , Doenças Raras/diagnóstico , Doenças Raras/genética , Reino Unido/epidemiologia
8.
J Pathol Clin Res ; 6(1): 12-16, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577849

RESUMO

Congenital hyperinsulinism (CHI) causes dysregulated insulin secretion which can lead to life-threatening hypoglycaemia if not effectively managed. CHI can be sub-classified into three distinct groups: diffuse, focal and mosaic pancreatic disease. Whilst the underlying causes of diffuse and focal disease have been widely characterised, the genetic basis of mosaic pancreatic disease is not known. To gain new insights into the underlying disease processes of mosaic-CHI we studied the islet tissue histopathology derived from limited surgical resection from the tail of the pancreas in a patient with CHI. The underlying genetic aetiology was investigated using a combination of high depth next-generation sequencing, microsatellite analysis and p57kip2 immunostaining. Histopathology of the pancreatic tissue confirmed the presence of a defined area associated with marked islet hypertrophy and a cytoarchitecture distinct from focal CHI but compatible with mosaic CHI localised to a discrete region within the pancreas. Analysis of DNA extracted from the lesion identified a de novo mosaic ABCC8 mutation and mosaic paternal uniparental disomy which were not present in leukocyte DNA or the surrounding unaffected pancreatic tissue. This study provides the first description of two independent disease-causing somatic genetic events occurring within the pancreas of an individual with localised mosaic CHI. Our findings increase knowledge of the genetic causes of islet disease and provide further insights into the underlying developmental changes associated with ß-cell expansion in CHI.


Assuntos
Hiperinsulinismo Congênito/genética , Ilhotas Pancreáticas/patologia , Mosaicismo , Receptores de Sulfonilureias/genética , Hiperinsulinismo Congênito/patologia , Feminino , Humanos , Recém-Nascido , Mutação , Dissomia Uniparental/genética
9.
Am J Hum Genet ; 104(2): 275-286, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30665703

RESUMO

More than 100,000 genetic variants are classified as disease causing in public databases. However, the true penetrance of many of these rare alleles is uncertain and might be over-estimated by clinical ascertainment. Here, we use data from 379,768 UK Biobank (UKB) participants of European ancestry to assess the pathogenicity and penetrance of putatively clinically important rare variants. Although rare variants are harder to genotype accurately than common variants, we were able to classify as high quality 1,244 of 4,585 (27%) putatively clinically relevant rare (MAF < 1%) variants genotyped on the UKB microarray. We defined as "clinically relevant" variants that were classified as either pathogenic or likely pathogenic in ClinVar or are in genes known to cause two specific monogenic diseases: maturity-onset diabetes of the young (MODY) and severe developmental disorders (DDs). We assessed the penetrance and pathogenicity of these high-quality variants by testing their association with 401 clinically relevant traits. 27 of the variants were associated with a UKB trait, and we were able to refine the penetrance estimate for some of the variants. For example, the HNF4A c.340C>T (p.Arg114Trp) (GenBank: NM_175914.4) variant associated with diabetes is <10% penetrant by the time an individual is 40 years old. We also observed associations with relevant traits for heterozygous carriers of some rare recessive conditions, e.g., heterozygous carriers of the ERCC4 c.2395C>T (p.Arg799Trp) variant that causes Xeroderma pigmentosum were more susceptible to sunburn. Finally, we refute the previous disease association of RNF135 in developmental disorders. In conclusion, this study shows that very large population-based studies will help refine our understanding of the pathogenicity of rare genetic variants.


Assuntos
Doença/genética , Genética Populacional , Mutação/genética , Penetrância , Alelos , Bases de Dados Genéticas , Deficiências do Desenvolvimento/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Heterozigoto , Humanos , Masculino , Reprodutibilidade dos Testes , Queimadura Solar/genética , Incerteza , Reino Unido , Xeroderma Pigmentoso/genética
10.
Clin Endocrinol (Oxf) ; 89(5): 621-627, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30238501

RESUMO

OBJECTIVE: Hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or more rarely feature as part of a syndrome. Screening for mutations in the "syndromic" HH genes is guided by phenotype with genetic testing used to confirm the clinical diagnosis. As HH can be the presenting feature of a syndrome, it is possible that mutations will be missed as these genes are not routinely screened in all newly diagnosed individuals. We investigated the frequency of pathogenic variants in syndromic genes in infants with HH who had not been clinically diagnosed with a syndromic disorder at referral for genetic testing. DESIGN: We used genome sequencing data to assess the prevalence of mutations in syndromic HH genes in an international cohort of patients with HH of unknown genetic cause. PATIENTS: We undertook genome sequencing in 82 infants with HH without a clinical diagnosis of a known syndrome at referral for genetic testing. MEASUREMENTS: Within this cohort, we searched for the genetic aetiologies causing 20 different syndromes where HH had been reported as a feature. RESULTS: We identified a pathogenic KMT2D variant in a patient with HH diagnosed at birth, confirming a genetic diagnosis of Kabuki syndrome. Clinical data received following the identification of the mutation highlighted additional features consistent with the genetic diagnosis. Pathogenic variants were not identified in the remainder of the cohort. CONCLUSIONS: Pathogenic variants in the syndromic HH genes are rare; thus, routine testing of these genes by molecular genetics laboratories is unlikely to be justified in patients without syndromic phenotypes.


Assuntos
Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Face/anormalidades , Feminino , Testes Genéticos , Doenças Hematológicas/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/genética , Doenças Vestibulares/genética , Adulto Jovem
11.
Nat Commun ; 8(1): 888, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026101

RESUMO

Finding new causes of monogenic diabetes helps understand glycaemic regulation in humans. To find novel genetic causes of maturity-onset diabetes of the young (MODY), we sequenced MODY cases with unknown aetiology and compared variant frequencies to large public databases. From 36 European patients, we identify two probands with novel RFX6 heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population within ExAC (odds ratio = 131, P = 1 × 10-4). We find similar results in non-Finnish European (n = 348, odds ratio = 43, P = 5 × 10-5) and Finnish (n = 80, odds ratio = 22, P = 1 × 10-6) replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common HNF1A and HNF4A-MODY mutations (27, 70 and 55% at 25 years of age, respectively). The hyperglycaemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Our study demonstrates that heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.Maturity-onset diabetes of the young (MODY) is the most common subtype of familial diabetes. Here, Patel et al. use targeted DNA sequencing of MODY patients and large-scale publically available data to show that RFX6 heterozygous protein truncating variants cause reduced penetrance MODY.


Assuntos
Códon sem Sentido , Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição de Fator Regulador X/genética , Estudos de Coortes , Europa (Continente) , Estudos de Associação Genética , Triagem de Portadores Genéticos , Razão de Chances
13.
Sci Rep ; 6: 21746, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883533

RESUMO

The long-read sequencers from Pacific Bioscience (PacBio) and Oxford Nanopore Technologies (ONT) offer the opportunity to phase mutations multiple kilobases apart directly from sequencing reads. In this study, we used long-range PCR with ONT and PacBio sequencing to phase two variants 9 kb apart in the RET gene. We also re-analysed data from a recent paper which had apparently successfully used ONT to phase clinically important haplotypes at the CYP2D6 and HLA loci. From these analyses, we demonstrate PCR-chimera formation during PCR amplification and reference alignment bias are pitfalls that need to be considered when attempting to phase variants using amplicon-based long-read sequencing technologies. These methodological pitfalls need to be avoided if the opportunities provided by long-read sequencers are to be fully exploited.


Assuntos
Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/normas , Análise de Sequência de DNA/métodos , Citocromo P-450 CYP2D6/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Mutação , Proteínas Proto-Oncogênicas c-ret/genética , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA