Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Haematologica ; 108(2): 409-419, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979719

RESUMO

Asparagine is a non-essential amino acid since it can either be taken up via the diet or synthesized by asparagine synthetase. Acute lymphoblastic leukemia (ALL) cells do not express asparagine synthetase or express it only minimally, which makes them completely dependent on extracellular asparagine for their growth and survival. This dependency makes ALL cells vulnerable to treatment with L-asparaginase, an enzyme that hydrolyzes asparagine. To date, all clinically approved L-asparaginases have significant L-glutaminase co-activity, associated with non-immune related toxic side effects observed during therapy. Therefore, reduction of L-glutaminase co-activity with concomitant maintenance of its anticancer L-asparaginase effect may effectively improve the tolerability of this unique drug. Previously, we designed a new alternative variant of Erwinia chrysanthemi (ErA; Erwinaze) with decreased L-glutaminase co-activity, while maintaining its L-asparaginase activity, by the introduction of three key mutations around the active site (ErA-TM). However, Erwinaze and our ErA-TM variant have very short half-lives in vivo. Here, we show that the fusion of ErA-TM with an albumin binding domain (ABD)-tag significantly increases its in vivo persistence. In addition, we evaluated the in vivo therapeutic efficacy of ABD-ErA-TM in a B-ALL xenograft model of SUP-B15. Our results show a comparable long-lasting durable antileukemic effect between the standard-of-care pegylated-asparaginase and ABD-ErA-TM L-asparaginase, but with fewer co-glutaminase-related acute side effects. Since the toxic side effects of current L-asparaginases often result in treatment discontinuation in ALL patients, this novel ErA-TM variant with ultra-low L-glutaminase co-activity and long in vivo persistence may have great clinical potential.


Assuntos
Aspartato-Amônia Ligase , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginase/farmacologia , Asparaginase/uso terapêutico , Glutaminase/química , Glutaminase/genética , Glutaminase/metabolismo , Asparagina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia Mieloide Aguda/tratamento farmacológico
2.
Cancers (Basel) ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205650

RESUMO

L-Asparaginase (L-ASNase) is an enzyme that hydrolyses the amino acid asparagine into aspartic acid and ammonia. Systemic administration of bacterial L-ASNase is successfully used to lower the bioavailability of this non-essential amino acid and to eradicate rapidly proliferating cancer cells with a high demand for exogenous asparagine. Currently, it is a cornerstone drug in the treatment of the most common pediatric cancer, acute lymphoblastic leukemia (ALL). Since these lymphoblasts lack the expression of asparagine synthetase (ASNS), these cells depend on the uptake of extracellular asparagine for survival. Interestingly, recent reports have illustrated that L-ASNase may also have clinical potential for the treatment of other aggressive subtypes of hematological or solid cancers. However, immunogenic and other severe adverse side effects limit optimal clinical use and often lead to treatment discontinuation. The design of optimized and novel L-ASNase formulations provides opportunities to overcome these limitations. In addition, identification of multiple L-ASNase resistance mechanisms, including ASNS promoter reactivation and desensitization, has fueled research into promising novel drug combinations to overcome chemoresistance. In this review, we discuss recent insights into L-ASNase adverse effects, resistance both in hematological and solid tumors, and how novel L-ASNase variants and drug combinations can expand its clinical applicability.

3.
Blood Adv ; 5(7): 1963-1976, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33830207

RESUMO

B-cell lymphoma 2 (BCL-2) has recently emerged as a therapeutic target for early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL), a high-risk subtype of human T-cell ALL. The major clinical challenge with targeted therapeutics, such as the BCL-2 inhibitor ABT-199, is the development of acquired resistance. We assessed the in vivo response of luciferase-positive LOUCY cells to ABT-199 monotherapy and observed specific residual disease in the splenic microenvironment. Of note, these results were confirmed by using a primary ETP-ALL patient-derived xenograft. Splenomegaly has previously been associated with poor prognosis in diverse types of leukemia. However, the exact mechanism by which the splenic microenvironment alters responses to specific targeted therapies remains largely unexplored. We show that residual LOUCY cells isolated from the spleen microenvironment displayed reduced BCL-2 dependence, which was accompanied by decreased BCL-2 expression levels. Notably, this phenotype of reduced BCL-2 dependence could be recapitulated by using human splenic fibroblast coculture experiments and was confirmed in an in vitro chronic ABT-199 resistance model of LOUCY. Finally, single-cell RNA-sequencing was used to show that ABT-199 triggers transcriptional changes in T-cell differentiation genes in leukemic cells obtained from the spleen microenvironment. Of note, increased expression of CD1a and sCD3 was also observed in ABT199-resistant LOUCY clones, further reinforcing the idea that a more differentiated leukemic population might display decreased sensitivity toward BCL-2 inhibition. Overall, our data reveal the spleen as a site of residual disease for ABT-199 treatment in ETP-ALL and provide evidence for plasticity in T-cell differentiation as a mechanism of therapy resistance.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Baço , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Chem Biol ; 27(2): 197-205.e6, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31734178

RESUMO

Biosynthesis of the pyrimidine nucleotide uridine monophosphate (UMP) is essential for cell proliferation and is achieved by the activity of convergent de novo and salvage metabolic pathways. Here we report the development and application of a cell-based metabolic modifier screening platform that leverages the redundancy in pyrimidine metabolism for the discovery of selective UMP biosynthesis modulators. In evaluating a library of protein kinase inhibitors, we identified multiple compounds that possess nucleotide metabolism modifying activity. The JNK inhibitor JNK-IN-8 was found to potently inhibit nucleoside transport and engage ENT1. The PDK1 inhibitor OSU-03012 (also known as AR-12) and the RAF inhibitor TAK-632 were shown to inhibit the therapeutically relevant de novo pathway enzyme DHODH and their affinities were unambiguously confirmed through in vitro assays and co-crystallization with human DHODH.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Nucleosídeos de Pirimidina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Simulação de Dinâmica Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/química
5.
Sci Rep ; 9(1): 17121, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745227

RESUMO

Choline kinase alpha is a 457-residue protein that catalyzes the reaction between ATP and choline to yield ADP and phosphocholine. This metabolic action has been well studied because of choline kinase's link to cancer malignancy and poor patient prognosis. As the myriad of x-ray crystal structures available for this enzyme show, chemotherapeutic drug design has centered on stopping the catalytic activity of choline kinase and reducing the downstream metabolites it produces. Furthermore, these crystal structures only reveal the catalytic domain of the protein, residues 80-457. However, recent studies provide evidence for a non-catalytic protein-binding role for choline kinase alpha. Here, we show that choline kinase alpha interacts with the SH3 domain of c-Src. Co-precipitation assays, surface plasmon resonance, and crystallographic analysis of a 1.5 Å structure demonstrate that this interaction is specific and is mediated by the poly-proline region found N-terminal to the catalytic domain of choline kinase. Taken together, these data offer strong evidence that choline kinase alpha has a heretofore underappreciated role in protein-protein interactions, which offers an exciting new way to approach drug development against this cancer-enhancing protein.


Assuntos
Proteína Tirosina Quinase CSK/química , Proteína Tirosina Quinase CSK/metabolismo , Colina Quinase/química , Colina Quinase/metabolismo , Domínios e Motivos de Interação entre Proteínas , Domínios de Homologia de src , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
6.
Sci Rep ; 9(1): 12798, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488858

RESUMO

15N labeled amino acids are routinely used to label proteins or nucleic acids for study by NMR. However, NMR studies of 15N labeled amino acids in metabolite studies have not been pursued extensively, presumably due to line broadening present under standard experimental conditions. In this work, we show that lowering the temperature to -5 °C allows facile characterization of 15N-labeled amino acids. Further, we show that this technique can be exploited to measure 15NH3 produced in an enzyme catalyzed reaction and the transport and metabolism of individual amino acids in mammalian cell culture. With respect to 13C-labeled amino acids, 15N-labeled amino acids are less costly and enable direct characterization of nitrogen metabolism in complex biological systems by NMR. In summary, the present work significantly expands the metabolite pools and their reactions for study by NMR.


Assuntos
Aminoácidos/química , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Nitrogênio/química , Compostos de Amônio/química , Linhagem Celular Tumoral , Humanos , Temperatura
7.
PLoS One ; 14(6): e0210305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242188

RESUMO

Ectonucleoside Triphosphate Diphosphohydrolase 5 (ENTPD5) has been shown to be important in maintaining cellular function in cancer, and its expression is upregulated through multiple, unique pathways in certain cancers, including laryngeal, glioblastoma multiforme, breast, testicular, and prostate. ENTPD5 supports cancer growth by promoting the import of UDP-glucose, a metabolite used for protein glycosylation and hence proper glycoprotein folding, into the ER by providing the counter molecule, UMP, to the ER antiporter. Despite its cancer-supporting function, no small molecule inhibitors of ENTPD5 are commercially available, and few studies have been performed in tissue culture to understand the effects of chemical inhibition of ENTPD5. We performed a high-throughput screen (HTS) of 21,120 compounds to identify small molecule inhibitors of ENPTD5 activity. Two hits were identified, and we performed a structure activity relationship (SAR) screen around these hits. Further validation of these probes were done in an orthogonal assay and then assayed in cell culture to assess their effect on prostate cancer cell lines. Notably, treatment with the novel ENTPD5 inhibitor reduced the amount of glycoprotein produced in treated cells, consistent with the hypothesis that ENTPD5 is important for glycoprotein folding. This work serves as an important step in designing new molecular probes for ENTPD5 as well as further probing the utility of targeting ENTPD5 to combat cancer cell proliferation.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/análise , Ensaios de Triagem em Larga Escala/métodos , Proteínas Oncogênicas/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Pirofosfatases/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicoproteínas/efeitos dos fármacos , Humanos , Masculino , Sondas Moleculares , Células PC-3 , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Relação Estrutura-Atividade
8.
J Biol Chem ; 293(35): 13553-13565, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29980598

RESUMO

Mixed-lineage kinase 3 (MLK3; also known as MAP3K11) is a Ser/Thr protein kinase widely expressed in normal and cancerous tissues, including brain, lung, liver, heart, and skeletal muscle tissues. Its Src homology 3 (SH3) domain has been implicated in MLK3 autoinhibition and interactions with other proteins, including those from viruses. The MLK3 SH3 domain contains a six-amino-acid insert corresponding to the n-Src insert, suggesting that MLK3 may bind additional peptides. Here, affinity selection of a phage-displayed combinatorial peptide library for MLK3's SH3 domain yielded a 13-mer peptide, designated "MLK3 SH3-interacting peptide" (MIP). Unlike most SH3 domain peptide ligands, MIP contained a single proline. The 1.2-Å crystal structure of the MIP-bound SH3 domain revealed that the peptide adopts a ß-hairpin shape, and comparison with a 1.5-Å apo SH3 domain structure disclosed that the n-Src loop in SH3 undergoes an MIP-induced conformational change. A 1.5-Å structure of the MLK3 SH3 domain bound to a canonical proline-rich peptide from hepatitis C virus nonstructural 5A (NS5A) protein revealed that it and MIP bind the SH3 domain at two distinct sites, but biophysical analyses suggested that the two peptides compete with each other for SH3 binding. Moreover, SH3 domains of MLK1 and MLK4, but not MLK2, also bound MIP, suggesting that the MLK1-4 family may be differentially regulated through their SH3 domains. In summary, we have identified two distinct peptide-binding sites in the SH3 domain of MLK3, providing critical insights into mechanisms of ligand binding by the MLK family of kinases.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , MAP Quinase Quinase Quinases/química , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos/química , Ligação Proteica , Domínios de Homologia de src , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
9.
N Biotechnol ; 45: 36-44, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29763736

RESUMO

Transcription factor c-Myc is an oncoprotein that is regulated at the post-translational level through phosphorylation of two conserved residues, Serine 62 (Ser62) and Threonine 58 (Thr58). A highly specific tool capable of recognizing Myc via pThr58 is needed to monitor activation and localization. Through phage display, we have isolated 10 engineered Forkhead-associated (FHA) domains that selectively bind to a phosphothreonine (pThr)-containing peptide (53-FELLPpTPPLSPS-64) segment of human c-Myc. One domain variant was observed to bind to the Myc-pThr58 peptide with a KD value of 800 nM and had >1000-fold discrimination between the phosphorylated and non-phosphorylated peptide. The crystal structure of the engineered FHA Myc-pThr-binding domain (Myc-pTBD) was solved in complex with its cognate ligand. The Myc-pTBD was observed to be structurally similar to the yeast Rad9 FHA1 domain, except that its ß4-ß5 and ß10-ß11 loops form a hydrophobic pocket to facilitate the interaction between the domain and the peptide ligand. The Myc-pTBD's specificity for its cognate ligand was demonstrated to be on a par with 3 commercial polyclonal antibodies, suggesting that this recombinant reagent is a viable alternative to antibodies for monitoring Myc regulation.


Assuntos
Fosfopeptídeos/química , Fosfotreonina/química , Proteínas Proto-Oncogênicas c-myc/química , Humanos , Modelos Moleculares , Fosfopeptídeos/metabolismo , Fosfotreonina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
10.
Biochemistry ; 57(8): 1316-1325, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29389115

RESUMO

Choline kinase α (ChoKα) is an enzyme that is upregulated in many types of cancer and has been shown to be tumorigenic. As such, it makes a promising target for inhibiting tumor growth. Though there have been several inhibitors synthesized for ChoKα, not all of them demonstrate the same efficacy in vivo, though the reasons behind this difference in potency are not clear. One particular inhibitor, designated TCD-717, has recently completed phase I clinical trials. Cell culture and in vitro studies support the powerful inhibitory effect TCD-717 has on ChoKα, but an examination of the inhibitor's interaction with the ChoKα enzyme has been missing prior to this work. Here we detail the 2.35 Å structure of ChoKα in complex with TCD-717. Examination of this structure in conjunction with kinetic assays reveals that TCD-717 does not bind directly in the choline pocket as do previously characterized ChoKα inhibitors, but rather in a proximal but novel location near the surface of the enzyme. The unique binding site identified for TCD-717 lends insight for the future design of more potent in vivo inhibitors for ChoKα.


Assuntos
Colina Quinase/antagonistas & inibidores , Colina Quinase/química , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação , Colina Quinase/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química
11.
Cancer Res ; 78(6): 1549-1560, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29343523

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common type of pediatric cancer, although about 4 of every 10 cases occur in adults. The enzyme drug l-asparaginase serves as a cornerstone of ALL therapy and exploits the asparagine dependency of ALL cells. In addition to hydrolyzing the amino acid l-asparagine, all FDA-approved l-asparaginases also have significant l-glutaminase coactivity. Since several reports suggest that l-glutamine depletion correlates with many of the side effects of these drugs, enzyme variants with reduced l-glutaminase coactivity might be clinically beneficial if their antileukemic activity would be preserved. Here we show that novel low l-glutaminase variants developed on the backbone of the FDA-approved Erwinia chrysanthemi l-asparaginase were highly efficacious against both T- and B-cell ALL, while displaying reduced acute toxicity features. These results support the development of a new generation of safer l-asparaginases without l-glutaminase activity for the treatment of human ALL.Significance: A new l-asparaginase-based therapy is less toxic compared with FDA-approved high l-glutaminase enzymes Cancer Res; 78(6); 1549-60. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Asparaginase/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Recombinantes/metabolismo , Animais , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/farmacocinética , Linhagem Celular Tumoral , Feminino , Glutaminase/metabolismo , Glutamina/sangue , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Testes de Toxicidade Aguda , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
J Biol Chem ; 292(52): 21590-21597, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29127198

RESUMO

Viral entry into host cells is mediated by membrane proteins in a metastable state that transition to a more stable state upon a stimulus. For example, in the influenza envelope protein hemagglutinin (HA), the low pH in the endosome triggers a transition from the metastable prefusion conformation to the stable fusion conformation. To identify probes that interfere with HA function, here we screened a library of H7 HA peptides for inhibition of H7 HA-mediated entry. We discovered a peptide, PEP87 (WSYNAELLVAMENQHTI), that inhibited H7 and H5 HA-mediated entry. PEP87 corresponds to a highly conserved helical region of the HA2 subunit of HA that self-interacts in the neutral pH conformation. Mutagenesis experiments indicated that PEP87 binds to its native region in the HA trimer. We also found that PEP87 is unstructured in isolation but tends to form a helix as evidenced by CD and NMR studies. Fluorescence, chemical cross-linking, and saturation transfer difference NMR data suggested that PEP87 binds to the neutral pH conformation of HA and disrupts the HA structure without affecting its oligomerization state. Together, this work provides support for a model in which PEP87 disrupts HA function by displacing native interactions of the neutral pH conformation. Moreover, our observations indicate that the HA prefusion structure (and perhaps the metastable states of other viral entry proteins) is more dynamic with transient motions being larger than generally appreciated. These findings also suggest that the ensemble of prefusion structures presents many potential sites for targeting in therapeutic interventions.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Hemaglutininas/química , Humanos , Concentração de Íons de Hidrogênio , Influenza Humana/metabolismo , Fusão de Membrana/fisiologia , Modelos Moleculares , Mutagênese , Peptídeos/metabolismo , Conformação Proteica , Internalização do Vírus
13.
Sci Rep ; 7(1): 10224, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860480

RESUMO

L-asparaginase is a chemotherapy drug used to treat acute lymphoblastic leukemia (ALL). The main prerequisite for clinical efficacy of L-asparaginases is micromolar KM for asparagine to allow for complete depletion of this amino acid in the blood. Since currently approved L-asparaginases are of bacterial origin, immunogenicity is a challenge, which would be mitigated by a human enzyme. However, all human L-asparaginases have millimolar KM for asparagine. We recently identified the low KM guinea pig L-asparaginase (gpASNase1). Because gpASNase1 and human L-asparaginase 1 (hASNase1) share ~70% amino-acid identity, we decided to humanize gpASNase1 by generating chimeras with hASNase1 through DNA shuffling. To identify low KM chimeras we developed a suitable bacterial selection system (E. coli strain BW5Δ). Transforming BW5Δ with the shuffling libraries allowed for the identification of several low KM clones. To further humanize these clones, the C-terminal domain of gpASNase1 was replaced with that of hASNase1. Two of the identified clones, 63N-hC and 65N-hC, share respectively 85.7% and 87.1% identity with the hASNase1 but have a KM similar to gpASNase1. These clones possess 100-140 fold enhanced catalytic efficiency compared to hASNase1. Notably, we also show that these highly human-like L-asparaginases maintain their in vitro ALL killing potential.


Assuntos
Asparaginase/genética , Asparagina/genética , Autoantígenos/genética , Embaralhamento de DNA/métodos , Proteínas Recombinantes/metabolismo , Animais , Asparaginase/química , Asparaginase/metabolismo , Asparagina/química , Asparagina/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Evolução Molecular Direcionada , Cobaias , Humanos , Cinética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Homologia de Sequência do Ácido Nucleico
14.
PLoS One ; 11(6): e0157114, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280468

RESUMO

Cytotoxic drugs, such as nucleoside analogs and toxins, commonly suffer from off-target effects. One approach to mitigate this problem is to deliver the cytotoxic drug selectively to the intended site. While for toxins this can be achieved by conjugating the cell-killing moiety to a targeting moiety, it is not an option for nucleoside analogs, which rely on intracellular enzymes to convert them to their active triphosphorylated form. To overcome this limitation, and achieve site-targeted activation of nucleoside analogs, we fused the coding region of a prodrug-activating enzyme, deoxycytidine kinase (dCK), to affinity reagents that bind to the Her2 cell surface protein. We evaluated dCK fusions to an anti-Her2 affibody and Designed Ankyrin Repeat Protein (DARPin) for their ability to kill cancer cells by promoting the activation of the nucleoside analog fludarabine. Cell staining and flow cytometry experiments with three Her2 positive cancer cell lines (BT-474-JB, JIMT-1 and SK-OV-3) indicate dCK fusions binding and cellular internalization. In contrast, these reagents bind only weakly to the Her2 negative cell line, MCF-7. Cell proliferation assays indicate that SK-OV-3 and BT-474-JB cell lines exhibit significantly reduced proliferation rates when treated with targeting-module fused dCK and fludarabine, compared to fludarabine alone. These findings demonstrate that we have succeeded in delivering active dCK into the Her2-positive cells, thereby increasing the activation of fludarabine, which ultimately reduces the dose of nucleoside analog needed for cell killing. This strategy may help establish the therapeutic index required to differentiate between healthy tissues and cancer cells.


Assuntos
Apoptose , Neoplasias da Mama/patologia , Desoxicitidina Quinase/genética , Sistemas de Liberação de Medicamentos , Neoplasias Ovarianas/patologia , Receptor ErbB-2/metabolismo , Vidarabina/análogos & derivados , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Proliferação de Células , Terapia Combinada , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/terapia , Fosforilação , Receptor ErbB-2/genética , Células Tumorais Cultivadas , Vidarabina/farmacologia
15.
J Biol Chem ; 291(34): 17664-76, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27354283

RESUMO

Current FDA-approved l-asparaginases also possess significant l-glutaminase activity, which correlates with many of the toxic side effects of these drugs. Therefore, l-asparaginases with reduced l-glutaminase activity are predicted to be safer. We exploited our recently described structures of the Erwinia chrysanthemi l-asparaginase (ErA) to inform the design of mutants with diminished ability to hydrolyze l-glutamine. Structural analysis of these variants provides insight into the molecular basis for the increased l-asparagine specificity. A primary role is attributed to the E63Q mutation that acts to hinder the correct positioning of l-glutamine but not l-asparagine. The substitution of Ser-254 with either an asparagine or a glutamine increases the l-asparagine specificity but only when combined with the E63Q mutation. The A31I mutation reduces the substrate Km value; this is a key property to allow the required therapeutic l-asparagine depletion. Significantly, an ultra-low l-glutaminase ErA variant maintained its cell killing ability. By diminishing the l-glutaminase activity of these highly active l-asparaginases, our engineered ErA variants hold promise as l-asparaginases with fewer side effects.


Assuntos
Asparaginase/química , Proteínas de Bactérias/química , Dickeya chrysanthemi/enzimologia , Glutaminase , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Asparaginase/genética , Asparaginase/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Linhagem Celular Tumoral , Dickeya chrysanthemi/genética , Humanos
16.
Proc Natl Acad Sci U S A ; 113(15): 4027-32, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035974

RESUMO

Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds-[(18)F]Clofarabine; 2-chloro-2'-deoxy-2'-[(18)F]fluoro-9-ß-d-arabinofuranosyl-adenine ([(18)F]CFA) and 2'-deoxy-2'-[(18)F]fluoro-9-ß-d-arabinofuranosyl-guanine ([(18)F]F-AraG)-for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [(18)F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [(18)F]F-AraG is a better substrate for dGK than for dCK. [(18)F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [(18)F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [(18)F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [(18)F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [(18)F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [(18)F]CFA PET as a new cancer biomarker for treatment stratification and monitoring.


Assuntos
Nucleotídeos de Adenina/química , Arabinonucleosídeos/química , Biomarcadores Tumorais/química , Desoxicitidina Quinase/análise , Desoxicitidina Quinase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Clofarabina , Meios de Contraste/química , Desoxicitidina Quinase/antagonistas & inibidores , Humanos , Leucemia/enzimologia , Camundongos , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Ratos
17.
Biochemistry ; 55(8): 1246-53, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26855287

RESUMO

l-Asparaginases of bacterial origin are a mainstay of acute lymphoblastic leukemia treatment. The mechanism of action of these enzyme drugs is associated with their capacity to deplete the amino acid l-asparagine from the blood. However, clinical use of bacterial l-asparaginases is complicated by their dual l-asparaginase and l-glutaminase activities. The latter, even though representing only ∼10% of the overall activity, is partially responsible for the observed toxic side effects. Hence, l-asparaginases devoid of l-glutaminase activity hold potential as safer drugs. Understanding the key determinants of l-asparaginase substrate specificity is a prerequisite step toward the development of enzyme variants with reduced toxicity. Here we present crystal structures of the Erwinia chrysanthemi l-asparaginase in complex with l-aspartic acid and with l-glutamic acid. These structures reveal two enzyme conformations-open and closed-corresponding to the inactive and active states, respectively. The binding of ligands induces the positioning of the catalytic Thr15 into its active conformation, which in turn allows for the ordering and closure of the flexible N-terminal loop. Notably, l-aspartic acid is more efficient than l-glutamic acid in inducing the active positioning of Thr15. Structural elements explaining the preference of the enzyme for l-asparagine over l-glutamine are discussed with guidance to the future development of more specific l-asparaginases.


Assuntos
Asparaginase/metabolismo , Dickeya chrysanthemi/enzimologia , Asparaginase/química , Ácido Aspártico/metabolismo , Cristalografia por Raios X , Dickeya chrysanthemi/química , Dickeya chrysanthemi/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
18.
J Biol Chem ; 291(10): 5088-100, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26733195

RESUMO

Bacterial L-asparaginases play an important role in the treatment of certain types of blood cancers. We are exploring the guinea pig L-asparaginase (gpASNase1) as a potential replacement of the immunogenic bacterial enzymes. The exact mechanism used by L-asparaginases to catalyze the hydrolysis of asparagine into aspartic acid and ammonia has been recently put into question. Earlier experimental data suggested that the reaction proceeds via a covalent intermediate using a ping-pong mechanism, whereas recent computational work advocates the direct displacement of the amine by an activated water. To shed light on this controversy, we generated gpASNase1 mutants of conserved active site residues (T19A, T116A, T19A/T116A, K188M, and Y308F) suspected to play a role in hydrolysis. Using x-ray crystallography, we determined the crystal structures of the T19A, T116A, and K188M mutants soaked in asparagine. We also characterized their steady-state kinetic properties and analyzed the conversion of asparagine to aspartate using NMR. Our structures reveal bound asparagine in the active site that has unambiguously not formed a covalent intermediate. Kinetic and NMR assays detect significant residual activity for all of the mutants. Furthermore, no burst of ammonia production was observed that would indicate covalent intermediate formation and the presence of a ping-pong mechanism. Hence, despite using a variety of techniques, we were unable to obtain experimental evidence that would support the formation of a covalent intermediate. Consequently, our observations support a direct displacement rather than a ping-pong mechanism for l-asparaginases.


Assuntos
Asparaginase/química , Sequência de Aminoácidos , Amônia/metabolismo , Animais , Asparaginase/genética , Asparaginase/metabolismo , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Domínio Catalítico , Cobaias , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica
19.
J Med Chem ; 57(22): 9480-94, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25341194

RESUMO

Recently, we have shown that small molecule dCK inhibitors in combination with pharmacological perturbations of de novo dNTP biosynthetic pathways could eliminate acute lymphoblastic leukemia cells in animal models. However, our previous lead compound had a short half-life in vivo. Therefore, we set out to develop dCK inhibitors with favorable pharmacokinetic properties. We delineated the sites of the inhibitor for modification, guided by crystal structures of dCK in complex with the lead compound and with derivatives. Crystal structure of the complex between dCK and the racemic mixture of our new lead compound indicated that the R-isomer is responsible for kinase inhibition. This was corroborated by kinetic analysis of the purified enantiomers, which showed that the R-isomer has >60-fold higher affinity than the S-isomer for dCK. This new lead compound has significantly improved metabolic stability, making it a prime candidate for dCK-inhibitor based therapies against hematological malignancies and, potentially, other cancers.


Assuntos
Desoxicitidina Quinase/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Animais , Antineoplásicos/química , Sítios de Ligação , Química Farmacêutica/métodos , Simulação por Computador , Cristalografia por Raios X , Desoxicitidina/análogos & derivados , Desenho de Fármacos , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos C57BL , Microssomos/metabolismo , Fosforilação , Tomografia por Emissão de Pósitrons , Estereoisomerismo , Tiazóis/química
20.
J Biol Chem ; 289(48): 33175-86, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25320094

RESUMO

The initial observation that guinea pig serum kills lymphoma cells marks the serendipitous discovery of a new class of anti-cancer agents. The serum cell killing factor was shown to be an enzyme with L-asparaginase (ASNase) activity. As a direct result of this observation, several bacterial L-asparaginases were developed and are currently approved by the Food and Drug Administration for the treatment of the subset of hematological malignancies that are dependent on the extracellular pool of the amino acid asparagine. As drugs, these enzymes act to hydrolyze asparagine to aspartate, thereby starving the cancer cells of this amino acid. Prior to the work presented here, the precise identity of this guinea pig enzyme has not been reported in the peer-reviewed literature. We discovered that the guinea pig enzyme annotated as H0W0T5_CAVPO, which we refer to as gpASNase1, has the required low Km property consistent with that possessed by the cell-killing guinea pig serum enzyme. Elucidation of the ligand-free and aspartate complex gpASNase1 crystal structures allows a direct comparison with the bacterial enzymes and serves to explain the lack of L-glutaminase activity in the guinea pig enzyme. The structures were also used to generate a homology model for the human homolog hASNase1 and to help explain its vastly different kinetic properties compared with gpASNase1, despite a 70% sequence identity. Given that the bacterial enzymes frequently present immunogenic and other toxic side effects, this work suggests that gpASNase1 could be a promising alternative to these bacterial enzymes.


Assuntos
Antineoplásicos/química , Asparaginase/química , Animais , Antineoplásicos/uso terapêutico , Asparaginase/genética , Asparaginase/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/uso terapêutico , Cristalografia por Raios X , Cobaias , Humanos , Proteínas Recombinantes , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA