Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 115(9): 2090-6, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21319829

RESUMO

Lambda repressor fragment λ(*)(6-85) is one of the fastest folding small protein fragments known to date. We hypothesized that removal of three out of five helices of λ(*)(6-85) would further reduce this protein to its smallest folding core. Molecular dynamics simulations singled out two energetically stable reduced structures consisting of only helices 1 and 4 connected by a short glycine/serine linker, as well as a less stable control. We investigated these three polypeptides and their fragments experimentally by using circular dichroism, fluorescence spectroscopy, and temperature jump relaxation spectroscopy to gain insight into their thermodynamic and kinetic properties. Based on the thermal melts, the order of peptide stability was in correspondence with theoretical predictions. The most stable two-helix bundle, λ(blue1), is a cooperatively folding miniprotein with the same melting temperature and folding rate as the full-length λ(*)(6-85) pseudo wild type and a well-defined computed structure.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Proteínas Repressoras/química , Proteínas Virais Reguladoras e Acessórias/química , Sequência de Aminoácidos , Bases de Dados de Proteínas , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Desdobramento de Proteína , Temperatura , Termodinâmica
2.
Proc Natl Acad Sci U S A ; 100(23): 13264-9, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14583592

RESUMO

An important goal after structural genomics is to build up the structures of higher-order protein-protein complexes from structures of the individual subunits. Often structures of higher order complexes are difficult to obtain by crystallography. We have used an alternative approach in which the structures of the individual catalytic (C) subunit and RIalpha regulatory (R) subunit of PKA were first subjected to computational docking, and the top 100,000 solutions were subsequently filtered based on amide hydrogen/deuterium (H/2H) exchange interface protection data. The resulting set of filtered solutions forms an ensemble of structures in which, besides the inhibitor peptide binding site, a flat interface between the C-terminal lobe of the C-subunit and the A- and B-helices of RIalpha is uniquely identified. This holoenzyme structure satisfies all previous experimental data on the complex and allows prediction of new contacts between the two subunits.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA