Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nat Commun ; 14(1): 3980, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407593

RESUMO

Hepatitis C virus (HCV) is a major global health burden as the leading causative agent of chronic liver disease and hepatocellular carcinoma. While the main antigenic target for HCV-neutralizing antibodies is the membrane-associated E1E2 surface glycoprotein, the development of effective vaccines has been hindered by complications in the biochemical preparation of soluble E1E2 ectodomains. Here, we present a cryo-EM structure of an engineered, secreted E1E2 ectodomain of genotype 1b in complex with neutralizing antibodies AR4A, HEPC74, and IGH520. Structural characterization of the E1 subunit and C-terminal regions of E2 reveal an overall architecture of E1E2 that concurs with that observed for non-engineered full-length E1E2. Analysis of the AR4A epitope within a region of E2 that bridges between the E2 core and E1 defines the structural basis for its broad neutralization. Our study presents the structure of an E1E2 complex liberated from membrane via a designed scaffold, one that maintains all essential structural features of native E1E2. The study advances the understanding of the E1E2 heterodimer structure, crucial for the rational design of secreted E1E2 antigens in vaccine development.


Assuntos
Hepacivirus , Hepatite C , Humanos , Anticorpos Neutralizantes , Epitopos , Proteínas do Envelope Viral
2.
J Virol ; 97(1): e0178822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36519897

RESUMO

Despite the development of highly effective hepatitis C virus (HCV) treatments, an effective prophylactic vaccine is still lacking. HCV infection is mediated by its envelope glycoproteins, E1 and E2, during the entry process, with E2 binding to cell receptors and E1 mediating endosomal fusion. The structure of E1E2 has only been partially resolved by X-ray crystallography of the core domain of E2 protein (E2c) and its complex with various neutralizing antibodies. Structural understanding of the E1E2 heterodimer in its native form can advance the design of candidates for HCV vaccine development. Here, we analyze the structure of the recombinant HCV E1E2 heterodimer with the aid of well-defined monoclonal anti-E1 and E2 antibodies, as well as a small-molecule chlorcyclizine-diazirine-biotin that can target and cross-link the putative E1 fusion domain. Three-dimensional (3D) models were generated after extensive 2D classification analysis with negative-stain single-particle data sets. We modeled the available crystal structures of the E2c and Fabs into 3D volumes of E1E2-Fab complexes based on the shape and dimension of the domain density. The E1E2 heterodimer exists in monomeric form and consists of a main globular body, presumably depicting the E1 and E2 stem/transmembrane domain, and a protruding structure representing the E2c region, based on anti-E2 Fab binding. At low resolution, a model generated from negative-stain analysis revealed the unique binding and orientation of individual or double Fabs onto the E1 and E2 components of the complex. Cryo-electron microscopy (cryo-EM) of the double Fab complexes resulted in a refined structural model of the E1E2 heterodimer, presented here. IMPORTANCE Recombinant HCV E1E2 heterodimer is being developed as a vaccine candidate. Using electron microscopy, we demonstrated unique features of E1E2 in complex with various neutralizing antibodies and small molecule inhibitors that are important to understanding its antigenicity and induction of immune response.


Assuntos
Hepacivirus , Proteínas do Envelope Viral , Humanos , Anticorpos Neutralizantes/química , Microscopia Crioeletrônica , Elétrons , Hepacivirus/fisiologia , Hepatite C , Imageamento Tridimensional , Proteínas do Envelope Viral/química , Conformação Proteica
3.
Gut ; 72(3): 560-572, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918103

RESUMO

OBJECTIVE: A prophylactic vaccine is needed to control the HCV epidemic, with genotypes 1-3 causing >80% of worldwide infections. Vaccine development is hampered by HCV heterogeneity, viral escape including protection of conserved neutralising epitopes and suboptimal efficacy of HCV cell culture systems. We developed cell culture-based inactivated genotype 1-3 HCV vaccine candidates to present natively folded envelope proteins to elicit neutralising antibodies. DESIGN: High-yield genotype 1a, 2a and 3a HCV were developed by serial passage of TNcc, J6cc and DBN3acc in Huh7.5 cells and engineering of acquired mutations detected by next-generation sequencing. Neutralising epitope exposure was determined in cell-based neutralisation assays using human monoclonal antibodies AR3A and AR4A, and polyclonal antibody C211. BALB/c mice were immunised with processed and inactivated genotype 1a, 2a or 3a viruses using AddaVax, a homologue of the licenced adjuvant MF-59. Purified mouse and patient serum IgG were assayed for neutralisation capacity; mouse IgG and immune-sera were assayed for E1/E2 binding. RESULTS: Compared with the original viruses, high-yield viruses had up to ~1000 fold increased infectivity titres (peak titres: 6-7 log10 focus-forming units (FFU)/mL) and up to ~2470 fold increased exposure of conserved neutralising epitopes. Vaccine-induced IgG broadly neutralised genotype 1-6 HCV (EC50: 30-193 µg/mL; mean 71 µg/mL), compared favourably with IgG from chronically infected patients, and bound genotype 1-3 E1/E2; immune-sera endpoint titres reached up to 32 000. CONCLUSION: High-yield genotype 1-3 HCV could be developed as basis for inactivated vaccine candidates inducing broadly neutralising antibodies in mice supporting further preclinical development.


Assuntos
Hepatite C , Vacinas contra Hepatite Viral , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/metabolismo , Epitopos/metabolismo , Genótipo , Imunoglobulina G , Hepacivirus/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
4.
Methods Mol Biol ; 2578: 63-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152281

RESUMO

Understanding antibody specificity and defining response profiles to antigens continue to be essential to both vaccine research and therapeutic antibody development. Peptide scanning assays enable mapping of continuous epitopes in order to delineate antibody-antigen interactions beyond traditional immunoassay formats. We have developed a relatively low-cost method to generate peptide microarray slides for antibody binding studies that allow for interrogation of up to 1536 overlapping peptides derived from the target antigens on a single microslide. Using an IntavisAG MultiPep RS peptide synthesizer and a Digilab MicroGrid II 600 microarray printer robot, each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface. Interrogation of the surface can then be performed using polyclonal immune sera or monoclonal antibodies, and sensitive detection using an InnoScan 1100 AL scanner with fluorescent-conjugated secondary reagents maximizes conservation of reagents.


Assuntos
Análise Serial de Proteínas , Vacinas , Anticorpos Monoclonais , Mapeamento de Epitopos/métodos , Epitopos , Soros Imunes , Peptídeos , Polietilenoglicóis , Análise Serial de Proteínas/métodos
5.
Hepatology ; 77(3): 982-996, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056620

RESUMO

BACKGROUND AND AIMS: HCV evasion of neutralizing antibodies (nAb) results in viral persistence and poses challenges to the development of an urgently needed vaccine. N-linked glycosylation of viral envelope proteins is a key mechanism for such evasion. To facilitate rational vaccine design, we aimed to identify determinants of protection of conserved neutralizing epitopes. APPROACH AND RESULTS: Using a reverse evolutionary approach, we passaged genotype 1a, 1b, 2a, 3a, and 4a HCV with envelope proteins (E1 and E2) derived from chronically infected patients without selective pressure by nAb in cell culture. Compared with the original viruses, HCV recombinants, engineered to harbor substitutions identified in polyclonal cell culture-passaged viruses, showed highly increased fitness and exposure of conserved neutralizing epitopes in antigenic regions 3 and 4, associated with protection from chronic infection. Further reverse genetic studies of acquired E1/E2 substitutions identified positions 418 and 532 in the N1 and N6 glycosylation motifs, localizing to adjacent E2 areas, as key regulators of changes of the E1/E2 conformational state, which governed viral sensitivity to nAb. These effects were independent of predicted glycan occupancy. CONCLUSIONS: We show how N-linked glycosylation motifs can trigger dramatic changes in HCV sensitivity to nAb, independent of glycan occupancy. These findings aid in the understanding of HCV nAb evasion and rational vaccine design, as they can be exploited to stabilize the structurally flexible envelope proteins in an open conformation, exposing important neutralizing epitopes. Finally, this work resulted in a panel of highly fit cell culture infectious HCV recombinants.


Assuntos
Hepatite C , Proteínas do Envelope Viral , Humanos , Proteínas do Envelope Viral/genética , Anticorpos Neutralizantes , Epitopos , Polissacarídeos/metabolismo , Hepatite C/prevenção & controle , Hepacivirus , Anticorpos Anti-Hepatite C
6.
Cell Rep ; 39(8): 110859, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613596

RESUMO

The E1 and E2 envelope proteins of hepatitis C virus (HCV) form a heterodimer that drives virus-host membrane fusion. Here, we analyze the role of each amino acid in E1E2 function, expressing 545 individual alanine mutants of E1E2 in human cells, incorporating them into infectious viral pseudoparticles, and testing them against 37 different monoclonal antibodies (MAbs) to ascertain full-length translation, folding, heterodimer assembly, CD81 binding, viral pseudoparticle incorporation, and infectivity. We propose a model describing the role of each critical residue in E1E2 functionality and use it to examine how MAbs neutralize infection by exploiting functionally critical sites of vulnerability on E1E2. Our results suggest that E1E2 is a surprisingly fragile protein complex where even a single alanine mutation at 92% of positions disrupts its function. The amino-acid-level targets identified are highly conserved and functionally critical and can be exploited for improved therapies and vaccines.


Assuntos
Hepacivirus , Hepatite C , Alanina , Anticorpos Monoclonais , Humanos , Proteínas do Envelope Viral , Internalização do Vírus
7.
J Hepatol ; 76(5): 1051-1061, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990750

RESUMO

BACKGROUND & AIMS: A prophylactic vaccine is required to eliminate HCV as a global public health threat. We developed whole virus inactivated HCV vaccine candidates employing a licensed adjuvant. Further, we investigated the effects of HCV envelope protein modifications (to increase neutralization epitope exposure) on immunogenicity. METHODS: Whole virus vaccine antigen was produced in Huh7.5 hepatoma cells, processed using a multistep protocol and formulated with adjuvant (MF-59 analogue AddaVax or aluminium hydroxide). We investigated the capacity of IgG purified from the serum of immunized BALB/c mice to neutralize genotype 1-6 HCV (by virus neutralization assays) and to bind homologous envelope proteins (by ELISA). Viruses used for immunizations were (i) HCV5aHi with strain SA13 envelope proteins and modification of an O-linked glycosylation site in E2 (T385P), (ii) HCV5aHi(T385) with reversion of T385P to T385, featuring the original E2 sequence determined in vivo and (iii) HCV5aHi(ΔHVR1) with deletion of HVR1. For these viruses, epitope exposure was investigated using human monoclonal (AR3A and AR4A) and polyclonal (C211 and H06) antibodies in neutralization assays. RESULTS: Processed HCV5aHi formulated with AddaVax induced antibodies that efficiently bound homologous envelope proteins and broadly neutralized cultured genotype 1-6 HCV, with half maximal inhibitory concentrations of between 14 and 192 µg/ml (mean of 36 µg/ml against the homologous virus). Vaccination with aluminium hydroxide was less immunogenic. Compared to HCV5aHi(T385) with the original E2 sequence, HCV5aHi with a modified glycosylation site and HCV5aHi(ΔHVR1) without HVR1 showed increased neutralization epitope exposure but similar immunogenicity. CONCLUSION: Using an adjuvant suitable for human use, we developed inactivated whole HCV vaccine candidates that induced broadly neutralizing antibodies, which warrant investigation in further pre-clinical studies. LAY SUMMARY: A vaccine against hepatitis C virus (HCV) is needed to prevent the estimated 2 million new infections and 400,000 deaths caused by this virus each year. We developed inactivated whole HCV vaccine candidates using adjuvants licensed for human use, which, following immunization of mice, induced antibodies that efficiently neutralized all HCV genotypes with recognized epidemiological importance. HCV variants with modified envelope proteins exhibited similar immunogenicity as the virus with the original envelope proteins.


Assuntos
Hepatite C , Vacinas contra Hepatite Viral , Hidróxido de Alumínio/metabolismo , Animais , Anticorpos Neutralizantes , Antígenos Virais , Epitopos , Genótipo , Hepacivirus , Anticorpos Anti-Hepatite C , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral
8.
Gastroenterology ; 162(2): 562-574, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655573

RESUMO

BACKGROUND & AIMS: Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS: We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS: Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS: Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.


Assuntos
Variação Antigênica/imunologia , Antígenos Virais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Hepacivirus/imunologia , Testes de Neutralização/métodos , Proteínas do Envelope Viral/imunologia , Variação Antigênica/genética , Antígenos Virais/genética , Linhagem Celular Tumoral , Hepacivirus/genética , Hepatite C/prevenção & controle , Humanos , Imunogenicidade da Vacina , Reprodutibilidade dos Testes , Desenvolvimento de Vacinas , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/imunologia
9.
Immunity ; 54(4): 781-796.e4, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33675683

RESUMO

Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.


Assuntos
Anticorpos Neutralizantes/imunologia , Células Germinativas/imunologia , Glicoproteínas/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Macaca mulatta/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos B/imunologia , Células CHO , Linhagem Celular , Cricetulus , Epitopos/imunologia , Células HEK293 , Hepatite C/virologia , Humanos , Estudos Longitudinais , Macaca mulatta/virologia , Receptores de Antígenos de Linfócitos B/imunologia , Vacinação/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-32341067

RESUMO

Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.


Assuntos
Hepacivirus/imunologia , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos B/virologia , Modelos Animais de Doenças , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Hepatite C Crônica/imunologia , Humanos
11.
Cell Chem Biol ; 27(7): 767-769, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32679091

RESUMO

In this issue of Cell Chemical Biology, Hu et al. (2020) demonstrate that chlorcyclizine blocks HCV fusion by targeting the putative fusion peptide on the viral envelope glycoprotein E1. The study provides new insights into the viral fusion machinery, presenting an opportunity to study novel antivirals against HCV.


Assuntos
Hepacivirus , Hepatite C , Biologia , Hepatite C/tratamento farmacológico , Humanos , Piperazinas , Proteínas do Envelope Viral , Internalização do Vírus
12.
Gastroenterology ; 158(4): 1058-1071.e6, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31809725

RESUMO

BACKGROUND & AIMS: We investigated antibody responses to hepatitis C virus (HCV) antigens E1 and E2 and the relevance of animal models for vaccine development. We compared antibody responses to vaccination with recombinant E1E2 complex in healthy volunteers, non-human primates (NHPs), and mice. METHODS: We analyzed 519 serum samples from participants in a phase 1 vaccine trial (ClinicalTrials.gov identifier NCT00500747) and compared them with serum or plasma samples from C57BL/6J mice (n = 28) and rhesus macaques (n = 4) immunized with the same HCV E1E2 antigen. Blood samples were collected at different time points and analyzed for antibody binding, neutralizing activity, and epitope specificity. Monoclonal antibodies from the immunized NHPs were isolated from single plasmablasts and memory B cells, and their immunogenetic properties were characterized. RESULTS: Antibody responses of the volunteers, NHPs, and mice to the non-neutralizing epitopes on the E1 N-terminus and E2 hypervariable region 1 did not differ significantly. Antibodies from volunteers and NHPs that neutralized heterologous strains of HCV primarily interacted with epitopes in the antigen region 3. However, the neutralizing antibodies were not produced in sufficient levels for broad neutralization of diverse HCV isolates. Broadly neutralizing antibodies similar to the human VH1-69 class antibody specific for antigen region 3 were produced in the immunized NHPs. CONCLUSIONS: In an analysis of vaccinated volunteers, NHPs, and mice, we found that recombinant E1E2 vaccine antigen induces high-antibody titers that are insufficient to neutralize diverse HCV isolates. Antibodies from volunteers and NHPs bind to the same neutralizing epitopes for virus neutralization. NHPs can therefore be used as a preclinical model to develop HCV vaccines. These findings also provide useful baseline values for development of vaccines designed to induce production of neutralizing antibodies.


Assuntos
Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , Ensaios Clínicos Fase I como Assunto , Modelos Animais de Doenças , Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Humanos , Imunização , Imunogenicidade da Vacina , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Sintéticas/imunologia
13.
Nat Biomed Eng ; 3(10): 806-816, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332341

RESUMO

Protein-based therapeutics can activate the adaptive immune system, leading to the production of neutralizing antibodies and the clearance of the treated cells mediated by cytotoxic T cells. Here, we show that the sequential use of immune-orthogonal orthologues of CRISPR-associated protein 9 (Cas9) and adeno-associated viruses (AAVs) evades adaptive immune responses and enables effective gene editing using repeated dosing. We compared total sequence similarities and predicted binding strengths to class-I and class-II major histocompatibility complex (MHC) proteins for 284 DNA-targeting and 84 RNA-targeting CRISPR effectors and 167 AAV VP1-capsid-protein orthologues. We predict the absence of cross-reactive immune responses for 79% of the DNA-targeting Cas orthologues-which we validated for three Cas9 orthologues in mice-yet we anticipate broad immune cross-reactivity among the AAV serotypes. We also show that efficacious in vivo gene editing is uncompromised when using multiple dosing with orthologues of AAVs and Cas9 in mice that were previously immunized against the AAV vector and the Cas9 cargo. Multiple dosing with protein orthologues may allow for sequential regimens of protein therapeutics that circumvent pre-existing immunity or induced immunity.


Assuntos
Sistemas CRISPR-Cas/genética , Capsídeo , Dependovirus/genética , Terapia Genética/métodos , Imunidade Adaptativa , Animais , Edição de Genes , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Engenharia de Proteínas
14.
Sci Adv ; 5(1): eaav1882, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30613781

RESUMO

An effective vaccine to the antigenically diverse hepatitis C virus (HCV) must target conserved immune epitopes. Here, we investigate cross-neutralization of HCV genotypes by broadly neutralizing antibodies (bNAbs) encoded by the relatively abundant human gene family V H 1-69. We have deciphered the molecular requirements for cross-neutralization by this unique class of human antibodies from crystal structures of HCV E2 in complex with bNAbs. An unusually high binding affinity is found for germ line-reverted versions of VH1-69 precursor antibodies, and neutralization breadth is acquired during affinity maturation. Deep sequencing analysis of an HCV-immune B cell repertoire further demonstrates the importance of the V H 1-69 gene family in the generation of HCV bNAbs. This study therefore provides critical insights into immune recognition of HCV with important implications for rational vaccine design.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Afinidade de Anticorpos/imunologia , Sítios de Ligação , Doadores de Sangue , Linhagem Celular Tumoral , Reações Cruzadas/imunologia , Epitopos/química , Hepatite C/virologia , Humanos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia
15.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30487284

RESUMO

Yearly, ∼2 million people become hepatitis C virus (HCV) infected, resulting in an elevated lifetime risk for severe liver-related chronic illnesses. Characterizing epitopes of broadly neutralizing antibodies (NAbs), such as AR3A, is critical to guide vaccine development. Previously identified alanine substitutions that can reduce AR3A binding to expressed H77 envelope were introduced into chimeric cell culture-infectious HCV recombinants (HCVcc) H77(core-NS2)/JFH1. Substitutions G523A, G530A, and D535A greatly reduced fitness, and S424A, P525A, and N540A, although viable, conferred only low-level AR3A resistance. Using highly NAb-sensitive hypervariable region 1 (HVR1)-deleted HCVcc, H77/JFH1ΔHVR1 and J6(core-NS2)/JFH1ΔHVR1, we previously reported a low barrier to developing AR5A NAb resistance substitutions. Here, we cultured Huh7.5 cells infected with H77/JFH1, H77/JFH1ΔHVR1, or J6/JFH1ΔHVR1 with AR3A. We identified the resistance envelope substitutions M345T in H77/JFH1, L438S and F442Y in H77/JFH1ΔHVR1, and D431G in J6/JFH1ΔHVR1 M345T increased infectivity and conferred low-level AR3A resistance to H77/JFH1 but not H77/JFH1ΔHVR1 L438S and F442Y conferred high-level AR3A resistance to H77/JFH1ΔHVR1 but abrogated the infectivity of H77/JFH1. D431G conferred AR3A resistance to J6/JFH1ΔHVR1 but not J6/JFH1. This was possibly because D431G conferred broadly increased neutralization sensitivity to J6/JFH1D431G but not J6/JFH1ΔHVR1/D431G while decreasing scavenger receptor class B type I coreceptor dependency. Common substitutions at positions 431 and 442 did not confer high-level resistance in other genotype 2a recombinants [JFH1 or T9(core-NS2)/JFH1]. Although the data indicate that AR3A has a high barrier to resistance, our approach permitted identification of low-level resistance substitutions. Also, the HVR1-dependent effects on AR3A resistance substitutions suggest a complex role of HVR1 in virus escape and receptor usage, with important implications for HCV vaccine development.IMPORTANCE Hepatitis C virus (HCV) is a leading cause of liver-related mortality, and limited treatment accessibility makes vaccine development a high priority. The vaccine-relevant cross-genotype-reactive antibody AR3A has shown high potency, but the ability of the virus to rapidly escape by mutating the AR3A epitope (barrier to resistance) remains unexplored. Here, we succeeded in inducing only low-level AR3A resistance, indicating a higher barrier to resistance than what we have previously reported for AR5A. Furthermore, we identify AR3A resistance substitutions that have hypervariable region 1 (HVR1)-dependent effects on HCV viability and on broad neutralization sensitivity. One of these substitutions increased envelope breathing and decreased scavenger receptor class B type I HCV coreceptor dependency, both in an HVR1-dependent fashion. Thus, we identify novel AR3A-specific resistance substitutions and the role of HVR1 in protecting HCV from AR3-targeting antibodies. These viral escape mechanisms should be taken into consideration in future HCV vaccine development.


Assuntos
Anticorpos Antivirais/imunologia , Hepacivirus/imunologia , Hepacivirus/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular Tumoral , Epitopos , Genótipo , Hepacivirus/patogenicidade , Hepatite C/virologia , Humanos , Testes de Neutralização , Proteínas do Envelope Viral/genética , Proteínas Virais/genética
16.
Methods Mol Biol ; 1911: 295-304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30593634

RESUMO

The hepatitis C virus (HCV) envelope glycoproteins, E1 and E2, are crucial for HCV assembly and entry, and are promising vaccine antigens. However, they are challenging to study because of technical difficulties in protein production and in quality control for protein folding and glycosylation. To study E1 and E2 in different experimental systems, e.g. infected cells, virus culture, virus-like particles, and clinical samples, a standardized method to accurately quantify the glycoproteins will be essential for most research projects. Here we outline a sensitive assay based on dual-color fluorescence immunoblot and the Odyssey imaging system to detect and quantify HCV E1 and E2 glycoproteins either using a purified E1E2 complex, or an engineered protein standard containing E1 and E2 at equal molar ratio. The method is capable of simultaneously detecting and quantifying as little as 7 ng of E1 and 5 ng of E2 in HCV pseudoparticles, and will be useful to quantify E1 and E2 from a wide variety of samples.


Assuntos
Hepacivirus/química , Hepatite C/virologia , Immunoblotting/métodos , Proteínas do Envelope Viral/análise , Animais , Linhagem Celular , Fluorescência , Humanos
17.
Methods Mol Biol ; 1911: 381-393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30593640

RESUMO

The envelope glycoproteins E1 and E2 of hepatitis C virus form a heterodimeric complex on the viral surface. They are the targets of neutralizing antibodies and are being investigated as potential vaccine antigens. Because of the high level of cysteine residues and N-glycosylation sites in the polypeptide sequences, it is technically challenging to produce pure, folded recombinant E1, E2, and E1E2 complex for downstream analysis. In this chapter, the methods we used to isolate a panel of human antibodies specific to diverse antigenic regions on the glycoproteins are discussed. The antibodies have been found to be valuable reagents for the study of HCV envelope glycoproteins, including the determination of the first E2 core domain structure.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/isolamento & purificação , Proteínas do Envelope Viral/imunologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Técnicas de Visualização da Superfície Celular/instrumentação , Epitopos/imunologia , Hepacivirus/metabolismo , Hepatite C/sangue , Hepatite C/imunologia , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C/imunologia , Humanos , Imunogenicidade da Vacina , Domínios Proteicos , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/uso terapêutico
18.
Methods Mol Biol ; 1911: 421-432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30593642

RESUMO

Enzyme-linked immunosorbent assays (ELISAs) enable rapid detection and quantitation of antibodies in samples. Such assays can be highly sensitive and can be performed in most laboratories with basic equipment. Although detecting binding antibodies to the surface proteins of most pathogens by ELISA is not always indicative of antibody function, i.e., neutralizing activity of antibodies, the results can be used as a first step toward more in-depth analysis of antibody responses. Here we describe a method that can be used to standardize ELISAs for the detection of HCV envelope antibodies across laboratories and provide adaptations of the method to further characterize antibody responses in serum samples.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/isolamento & purificação , Hepatite C/imunologia , Lectinas de Ligação a Manose/imunologia , Lectinas de Plantas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Cricetulus , Ensaio de Imunoadsorção Enzimática/instrumentação , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Hepacivirus/metabolismo , Anticorpos Anti-Hepatite C/imunologia , Humanos , Testes de Neutralização/instrumentação , Testes de Neutralização/métodos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
19.
Methods Mol Biol ; 1911: 441-450, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30593644

RESUMO

Hepatitis C virus (HCV) pseudoparticles (HCVpp) are generated by cotransfection of HCV envelope (E1 and E2) genes along with a retroviral packaging/reporter construct into HEK293T cells. Enveloped particles bearing HCV E1E2 proteins on their surface are released through a retroviral budding process into the supernatant. Viral E1E2 glycoproteins facilitate a single round of receptor-mediated entry of HCVpp into hepatoma cells, which can be quantified by reporter gene expression. These HCVpp have been employed to study mechanisms of HCV entry into hepatoma cells, as well as HCV neutralization by immune sera or HCV-specific monoclonal antibodies.


Assuntos
Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Testes de Neutralização/métodos , Internalização do Vírus , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Linhagem Celular Tumoral , Genes Reporter/genética , Células HEK293 , Hepacivirus/imunologia , Hepatite C/sangue , Hepatite C/virologia , Anticorpos Anti-Hepatite C/sangue , Humanos , Testes de Neutralização/instrumentação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vírion/imunologia , Liberação de Vírus/imunologia
20.
J Infect Dis ; 219(1): 68-79, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102355

RESUMO

Global control of hepatitis C virus (HCV) depends on development of a prophylactic vaccine. We studied escape for cross-genotype-reactive neutralizing antibody AR4A, providing valuable information for HCV vaccine design. We cultured HCV core-NS2 recombinants H77 (genotype 1a)/JFH1 or the highly antibody-susceptible hypervariable region 1 (HVR1)-deleted variants H77/JFH1∆HVR1 and J6(genotype 2a)/JFH1∆HVR1 in Huh7.5 cells with AR4A. Long-term AR4A exposure of H77/JFH1 and H77/JFH1∆HVR1 did not yield resistance. However, J6/JFH1∆HVR1 developed the envelope-E2 substitutions I696T or I696N, which reduced AR4A binding (I696N > I696T). I696N conferred greater AR4A resistance than I696T in J6/JFH1∆HVR1, whereas the reverse was observed in J6/JFH1. This was because I696N but not I696T conferred broadly increased antibody neutralization susceptibility to J6/JFH1. I696N and I696T abrogated infectivity of H77/JFH1 and broadly increased neutralization susceptibility of S52 (genotype 3a)/JFH1. In conclusion, I696 is in the AR4A epitope, which has a high barrier to resistance, thus strengthening the rationale for its inclusion in rational HCV vaccine designs.


Assuntos
Anticorpos Monoclonais/sangue , Anticorpos Neutralizantes/sangue , Hepacivirus/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Anticorpos Amplamente Neutralizantes , Linhagem Celular Tumoral , Epitopos/imunologia , Genótipo , Humanos , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA