Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 1026, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169201

RESUMO

Current therapeutics of endometriosis focus on hormonal disruption of endometriotic lesions (ectopic endometrium, EcE). Recent findings show higher glycolysis utilization in EcE, suggesting non-hormonal strategy for disease treatment that addresses cellular metabolism. Identifying metabolically altered cell types in EcE is important for targeted metabolic drug therapy without affecting eutopic endometrium (EuE). Here, using single-cell RNA-sequencing, we examine twelve metabolic pathways in paired samples of EuE and EcE from women with confirmed endometriosis. We detect nine major cell types in both EuE and EcE. Metabolic pathways are most differentially regulated in perivascular, stromal, and endothelial cells, with the highest changes in AMPK signaling, HIF-1 signaling, glutathione metabolism, oxidative phosphorylation, and glycolysis. We identify transcriptomic co-activation of glycolytic and oxidative metabolism in perivascular and stromal cells of EcE, indicating a critical role of metabolic reprogramming in maintaining endometriotic lesion growth. Perivascular cells, involved in endometrial stroma repair and angiogenesis, may be potential targets for non-hormonal treatment of endometriosis.


Assuntos
Endometriose , Endométrio , Análise de Célula Única , Feminino , Humanos , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Endométrio/metabolismo , Endométrio/patologia , Adulto , Glicólise , Transcriptoma , Células Estromais/metabolismo , Células Estromais/patologia , Redes e Vias Metabólicas
2.
Front Genet ; 14: 1233657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745846

RESUMO

Childhood medulloblastoma is a malignant form of brain tumor that is widely classified into four subgroups based on molecular and genetic characteristics. Accurate classification of these subgroups is crucial for appropriate treatment, monitoring plans, and targeted therapies. However, misclassification between groups 3 and 4 is common. To address this issue, an AI-based R package called MBMethPred was developed based on DNA methylation and gene expression profiles of 763 medulloblastoma samples to classify subgroups using machine learning and neural network models. The developed prediction models achieved a classification accuracy of over 96% for subgroup classification by using 399 CpGs as prediction biomarkers. We also assessed the prognostic relevance of prediction biomarkers using survival analysis. Furthermore, we identified subgroup-specific drivers of medulloblastoma using functional enrichment analysis, Shapley values, and gene network analysis. In particular, the genes involved in the nervous system development process have the potential to separate medulloblastoma subgroups with 99% accuracy. Notably, our analysis identified 16 genes that were specifically significant for subgroup classification, including EP300, CXCR4, WNT4, ZIC4, MEIS1, SLC8A1, NFASC, ASCL2, KIF5C, SYNGAP1, SEMA4F, ROR1, DPYSL4, ARTN, RTN4RL1, and TLX2. Our findings contribute to enhanced survival outcomes for patients with medulloblastoma. Continued research and validation efforts are needed to further refine and expand the utility of our approach in other cancer types, advancing personalized medicine in pediatric oncology.

3.
Reprod Biomed Online ; 45(4): 713-720, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927210

RESUMO

RESEARCH QUESTION: Are paired samples of endometrium and ovarian endometriomas synchronous with each other throughout the menstrual cycle? DESIGN: The expression levels of 57 endometrial receptivity-associated genes were determined from matched endometrial and endometrioma samples (n=31) collected from women with endometriosis throughout the menstrual cycle. RESULTS: The expression profile of endometrial receptivity genes divided endometrial samples according to their menstrual cycle phase. Endometrioma samples grouped together irrespective of the menstrual cycle phase and formed a cluster distinct from endometrial samples. Pairwise comparison showed 21, 16, 33 and 23 differentially expressed genes (adjusted P < 0.001-0.05) between the lesions and endometria collected in the proliferative, early-secretory, mid-secretory and late-secretory menstrual cycle phases, respectively, confirming the distinct expression profiles of endometrium and endometrioma. CONCLUSIONS: No menstrual cycle synchronicity was found between matched eutopic and ectopic endometrium, suggesting that the concept of cycling endometrial tissue inside the endometrioma should be revised.


Assuntos
Endometriose , Endometriose/patologia , Endométrio/metabolismo , Epitélio/metabolismo , Feminino , Humanos , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo
4.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34359669

RESUMO

Metastatic cancers account for up to 90% of cancer-related deaths. The clear differentiation of metastatic cancers from primary cancers is crucial for cancer type identification and developing targeted treatment for each cancer type. DNA methylation patterns are suggested to be an intriguing target for cancer prediction and are also considered to be an important mediator for the transition to metastatic cancer. In the present study, we used 24 cancer types and 9303 methylome samples downloaded from publicly available data repositories, including The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). We constructed machine learning classifiers to discriminate metastatic, primary, and non-cancerous methylome samples. We applied support vector machines (SVM), Naive Bayes (NB), extreme gradient boosting (XGBoost), and random forest (RF) machine learning models to classify the cancer types based on their tissue of origin. RF outperformed the other classifiers, with an average accuracy of 99%. Moreover, we applied local interpretable model-agnostic explanations (LIME) to explain important methylation biomarkers to classify cancer types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA