Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38821668

RESUMO

In this paper, we studied the potential genotoxic effects of human plasma from healthy volunteers, as well as patients with gastro-oesophageal reflux disease, Barrett's oesophagus (BO) and oesophageal adenocarcinoma (OAC) using the oesophageal adenocarcinoma cell line (OE33) and the lymphoblastoid cell line (TK6). Both TK6 and OE33 cells were treated with plasma (10 % volume, replacing foetal bovine serum (FBS) or horse serum (HS)) at different time points of 4 h (for the micronucleus (Mn) assay and the invasion assay) and 24 h (for the cell cycle studies). Plasma-induced effects on DNA damage levels, cell viability and the cell cycle were studied by the micronucleus assay, cytokinesis block proliferation index (CBPI) and flow cytometry respectively. The expression of IL-8 in supernatants of TK6 cells and IFN-ß in OE33 cells was also analysed by enzyme-linked immunosorbent assay (ELISA). Finally, we carried out an assessment of cellular invasion of OE33 cells following plasma treatment. The results of the micronucleus assay confirmed the genotoxicity of direct plasma treatment from some participants through the increase in DNA damage in TK6 cells. Conversely, some individual patient plasma samples reduced background levels of TK6 cell Mn frequency, in an anti-genotoxic fashion. In TK6 cells, (on average) plasma samples from patients with Barrett's oesophagus induced higher micronucleus levels than healthy volunteers (p= 0.0019). There was little difference in Mn induction when using plasma versus serum to treat the cells in vitro. Cell cycle results showed that direct plasma treatment had a marked impact on OE33 cells at 24 h (p=0.0182 for BO and p=0.0320 for OAC) by decreasing the proportion of cells in the S phase, while plasma exposure was less impactful on the cell cycle of TK6 cells. Invasion of OE33 cells was also seen to be non-significantly affected by plasma treatment of OE33 cells. The addition of N-acetyl cysteine NAC in a dose-dependent matter did not alter the formation of Mn in TK6 cells, suggesting that reactive oxygen species (ROS) are not the root cause of plasma's genotoxicity. The concentration of IL-8 in TK6 cells and IFN-ß in OE33 cells was significantly higher in cells treated with OAC-derived plasma than in the untreated negative control. Collectively, our results demonstrate that plasma-specific effects are detectable which helps us better understand some important aspects of the biology of blood-based biomarkers under development.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Dano ao DNA , Neoplasias Esofágicas , Testes para Micronúcleos , Humanos , Esôfago de Barrett/patologia , Esôfago de Barrett/genética , Adenocarcinoma/patologia , Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Plasma/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Adulto , Sobrevivência Celular/efeitos dos fármacos , Feminino , Micronúcleos com Defeito Cromossômico , Interferon beta , Idoso
2.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607017

RESUMO

Proteolysis-targeting chimeras (PROTACs) describe compounds that bind to and induce degradation of a target by simultaneously binding to a ubiquitin ligase. More generally referred to as bifunctional degraders, PROTACs have led the way in the field of targeted protein degradation (TPD), with several compounds currently undergoing clinical testing. Alongside bifunctional degraders, single-moiety compounds, or molecular glue degraders (MGDs), are increasingly being considered as a viable approach for development of therapeutics, driven by advances in rational discovery approaches. This review focuses on drug discovery with respect to bifunctional and molecular glue degraders within the ubiquitin proteasome system, including analysis of mechanistic concepts and discovery approaches, with an overview of current clinical and pre-clinical degrader status in oncology, neurodegenerative and inflammatory disease.


Assuntos
Descoberta de Drogas , Oncologia , Citoplasma , Complexo de Endopeptidases do Proteassoma , Proteólise , Ubiquitina
3.
Mol Cancer Res ; 22(6): 515-523, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38546397

RESUMO

The pathogenesis of duodenal tumors in the inherited tumor syndromes familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) is poorly understood. This study aimed to identify genes that are significantly mutated in these tumors and to explore the effects of these mutations. Whole exome and whole transcriptome sequencing identified recurrent somatic coding variants of phosphatidylinositol N-acetylglucosaminyltransferase subunit A (PIGA) in 19/70 (27%) FAP and MAP duodenal adenomas, and further confirmed the established driver roles for APC and KRAS. PIGA catalyzes the first step in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Flow cytometry of PIGA-mutant adenoma-derived and CRISPR-edited duodenal organoids confirmed loss of GPI anchors in duodenal epithelial cells and transcriptional profiling of duodenal adenomas revealed transcriptional signatures associated with loss of PIGA. IMPLICATIONS: PIGA somatic mutation in duodenal tumors from patients with FAP and MAP and loss of membrane GPI-anchors may present new opportunities for understanding and intervention in duodenal tumorigenesis.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Duodenais , Glicosilfosfatidilinositóis , Mutação , Humanos , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/genética , Neoplasias Duodenais/genética , Neoplasias Duodenais/metabolismo , Neoplasias Duodenais/patologia , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Carcinogênese/genética , Masculino , Feminino
4.
Environ Mol Mutagen ; 64(8-9): 480-493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37926486

RESUMO

The blood cell phosphatidylinositol glycan class A (PIG-A) gene mutation assay has been extensively researched in rodents for in vivo mutagenicity testing and is now being investigated in humans. The PIG-A gene is involved in glycosyl phosphatidylinositol (GPI)-anchor biosynthesis. A single mutation in this X-linked gene can lead to loss of membrane-bound GPI anchors, which can be enumerated via corresponding GPI-anchored proteins (e.g., CD55) using flow cytometry. The studies published to date by different research groups demonstrate a remarkable consistency in PIG-A mutant frequencies. Moreover, with the low background level of mutant erythrocytes in healthy subjects (2.9-5.56 × 10-6 mutants), induction of mutation post genotoxic exposure can be detected. Cigarette smoking, radiotherapy, and occupational exposures, including lead, have been shown to increase mutant levels. Future applications of this test include identifying new harmful agents and establishing new exposure limits. This mutational monitoring approach may also identify individuals at higher risk of cancer development. In addition, identifying protective agents that could mitigate these effects may reduce baseline somatic mutation levels and such behaviors can be encouraged. Further technological progress is required including establishing underlying mechanisms of GPI anchor loss, protocol standardization, and the development of cryopreservation methods to improve GPI-anchor stability over time. If successful, this assay has the potential be widely employed, for example, in rural and low-income countries. Here, we review the current literature on PIG-A mutation in humans and discuss the potential role of this assay in human biomonitoring and disease detection.


Assuntos
Monitoramento Biológico , Glicosilfosfatidilinositóis , Humanos , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana/genética , Mutação , Eritrócitos/metabolismo
5.
BMC Cancer ; 23(1): 581, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353740

RESUMO

BACKGROUND: Treatment decisions in prostate cancer (PCa) rely on disease stratification between localised and metastatic stages, but current imaging staging technologies are not sensitive to micro-metastatic disease. Circulating tumour cells (CTCs) status is a promising tool in this regard. The Parsortix® CTC isolation system employs an epitope-independent approach based on cell size and deformability to increase the capture rate of CTCs. Here, we present a protocol for prospective evaluation of this method to predict post radical prostatectomy (RP) PCa cancer recurrence. METHODS: We plan to recruit 294 patients diagnosed with unfavourable intermediate, to high and very high-risk localised PCa. Exclusion criteria include synchronous cancer diagnosis or prior PCa treatment, including hormone therapy. RP is performed according to the standard of care. Two blood samples (20 ml) are collected before and again 3-months after RP. The clinical team are blinded to CTC results and the laboratory researchers are blinded to clinical information. Treatment failure is defined as a PSA ≥ 0.2 mg/ml, start of salvage treatment or imaging-proven metastatic lesions. The CTC analysis entails enumeration and RNA analysis of gene expression in captured CTCs. The primary outcome is the accuracy of CTC status to predict post-RP treatment failure at 4.5 years. Observed sensitivity, positive and negative predictive values will be reported. Specificity will be presented over time. DISCUSSION: CTC status may reflect the true potential for PCa metastasis and may predict clinical outcomes better than the current PCa progression risk grading systems. Therefore establishing a robust biomarker for predicting treatment failure in localized high-risk PCa would significantly enhance guidance in treatment decision-making, optimizing cure rates while minimizing unnecessary harm from overtreatment. TRIAL REGISTRATION: ISRCTN17332543.


Assuntos
Células Neoplásicas Circulantes , Neoplasias da Próstata , Masculino , Humanos , Estudos Prospectivos , Células Neoplásicas Circulantes/patologia , Recidiva Local de Neoplasia/cirurgia , Neoplasias da Próstata/patologia , Prostatectomia/métodos , Antígeno Prostático Específico , Falha de Tratamento
6.
Nat Rev Clin Oncol ; 20(7): 487-500, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268719

RESUMO

Given that cancer mortality is usually a result of late diagnosis, efforts in the field of early detection are paramount to reducing cancer-related deaths and improving patient outcomes. Increasing evidence indicates that metastasis is an early event in patients with aggressive cancers, often occurring even before primary lesions are clinically detectable. Metastases are usually formed from cancer cells that spread to distant non-malignant tissues via the blood circulation, termed circulating tumour cells (CTCs). CTCs have been detected in patients with early stage cancers and, owing to their association with metastasis, might indicate the presence of aggressive disease, thus providing a possible means to expedite diagnosis and treatment initiation for such patients while avoiding overdiagnosis and overtreatment of those with slow-growing, indolent tumours. The utility of CTCs as an early diagnostic tool has been investigated, although further improvements in the efficiency of CTC detection are required. In this Perspective, we discuss the clinical significance of early haematogenous dissemination of cancer cells, the potential of CTCs to facilitate early detection of clinically relevant cancers, and the technological advances that might improve CTC capture and, thus, diagnostic performance in this setting.


Assuntos
Neoplasias , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Neoplasias/diagnóstico
7.
Mutagenesis ; 38(2): 93-99, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37006185

RESUMO

Pancreatic cancer still has one of the worst prognoses of all solid malignancies, despite developments in cancer knowledge and care. Research into pancreatic cancer has not fully translated into clinical improvements and as a result, fewer than 1% of patients survive 10 years post-diagnosis. This bleak outlook for patients could be improved by earlier diagnosis. The human erythrocyte phosphatidylinositol glycan class A (PIG-A) assay monitors the mutation status of the X-linked PIG-A gene by measuring glycosyl phosphatidylinositol (GPI)-anchored proteins on the extracellular surface. We have previously identified an elevated PIG-A mutant frequency in oesophageal adenocarcinoma patients and here investigate whether this could be seen in a pancreatic cancer cohort, given the urgent need for novel pancreatic cancer biomarkers. In our pilot study, an elevated PIG-A mutant frequency (5.775 × 10-6 (95% CI 4.777-10) mutants per million) was seen in pancreatic cancer patients (n = 30) when compared to the non-cancer control group (n = 14) who had an erythrocyte mutant frequency of 4.211 × 10-6 (95% CI 1.39-5.16) mutants per million (p = 0.0052). A cut-off value of 4.7 mutants per million provided an AUROC of 0.7595 with a sensitivity of 70% and specificity of 78.57%. A secondary measure of DNA damage in an alternative blood cell population also showed an increase in peripheral lymphocytes using the cytokinesis-block micronucleus assay (p = 0.0164) (AUROC = 0.77, sensitivity = 72.22%, specificity = 72.73%). The micronucleus frequency and PIG-A status show some potential as blood-based biomarkers of pancreatic cancer, but further investigations of these DNA damage tests are required to assess their utility in pancreatic cancer diagnosis.


Assuntos
Glicosilfosfatidilinositóis , Neoplasias Pancreáticas , Humanos , Projetos Piloto , Mutação , Dano ao DNA/genética , Linfócitos , Testes para Micronúcleos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética
8.
Mutagenesis ; 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33043963

RESUMO

It is well understood that poor diet and lifestyle choices can increase the risk of cancer. It is also well documented that cancer is a disease of DNA mutations, with mutations in key genes driving carcinogenesis. Measuring these mutations in a minimally invasive way may be informative as to which exposures are harmful and thus allow us to introduce primary preventative measures, in a bid to reduce cancer incidences. Here, we have measured mutations in the phosphatidylinositol glycan class A (PIG-A) gene in erythrocytes from healthy volunteers (n = 156) and from non-cancer patients attending the local endoscopy department (n = 144). The X-linked PIG-A gene encodes an enzyme involved in glycosylphosphatidylinositol (GPI) anchor synthesis. A silencing mutation in which leads to the absence of GPI anchors on the extracellular surface which can be rapidly assessed using flow cytometry. The background level of PIG-A mutant erythrocytes was 2.95 (95% CI: 2.59-3.67) mutant cells (10-6). Older age increased mutant cell frequency (P < 0.001). There was no difference in mutant cell levels between males and females (P = 0.463) or smokers and non-smokers (P = 0.186). In the endoscopy group, aspirin users had lower mutant frequencies (P = 0.001). Further information on diet and exercise was available for the endoscopy patient group alone, where those with a higher health promotion index score had lower mutant frequencies (P = 0.011). Higher dietary intake of vegetables reduced mutant cell levels (P = 0.022). Participants who exercised for at least 1 h a week appeared to have reduced mutant frequencies than those who did not exercise, although this was not statistically significant (P = 0.099). This low background level of mutant erythrocytes in a population makes this assay an attractive tool to monitor exposures such as those associated with lifestyles and diet, as demonstrated here.

9.
Sci Rep ; 9(1): 5168, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914682

RESUMO

The Phosphatidylinositol glycan class A (PIG-A) gene mutation assay phenotypically measures erythrocyte mutations, assessed here for their correlation to neoplastic progression in the gastro-oesophageal reflux disease (GORD)-Barrett's metaplasia (BM)-oesophageal adenocarcinoma (OAC) model. Endoscopy patients underwent venipuncture and erythrocytes fluorescently stained for glycosyl phosphatidylinositol (GPI)-anchored proteins; CD55 and CD59. Using flow cytometry, GPI-anchor negative erythrocytes (mutants) were scored and compared amongst groups. The study enlisted 200 patients and 137 healthy volunteers. OAC patients had a three-fold increase in erythrocyte mutant frequency (EMF) compared to GORD patients (p < 0.001) and healthy volunteers (p < 0.001). In OAC patients, higher EMF was associated with worsening tumour staging (p = 0.014), nodal involvement (p = 0.019) and metastatic disease (p = 0.008). Chemotherapy patients demonstrated EMF's over 19-times higher than GORD patients. Patients were further classified into groups containing those with non-neoplastic disease and those with high-grade dysplasia/cancer with 72.1% of cases correctly classified by high EMF. Within the non-neoplastic group, aspirin users had lower EMF (p = 0.001) and there was a positive correlation between body mass index (p = 0.03) and age (p < 0.001) and EMF. Smokers had EMF's over double that of non-smokers (p = 0.011). Results suggest this test could help detect OAC and may be a useful predictor of disease progression.


Assuntos
Adenocarcinoma/sangue , Adenocarcinoma/genética , Bioensaio , Biomarcadores Tumorais/genética , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/genética , Mutação/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Eritrócitos/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Humanos , Estilo de Vida , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Taxa de Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Fosfatidilinositóis/metabolismo
10.
Immunity ; 44(4): 795-806, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27067058

RESUMO

Eosinophils are now recognized as multifunctional leukocytes that provide critical homeostatic signals to maintain other immune cells and aid tissue repair. Paradoxically, eosinophils also express an armory of granule-localized toxins and hydrolases believed to contribute to pathology in inflammatory disease. How eosinophils deliver their supporting functions while avoiding self-inflicted injury is poorly understood. We have demonstrated that cystatin F (CF) is a critical survival factor for eosinophils. Eosinophils from CF null mice had reduced lifespan, reduced granularity, and disturbed granule morphology. In vitro, cysteine protease inhibitors restored granularity, demonstrating that control of cysteine protease activity by CF is critical for normal eosinophil development. CF null mice showed reduced pulmonary pathology in a model of allergic lung inflammation but also reduced ability to combat infection by the nematode Brugia malayi. These data identify CF as a "cytoprotectant" that promotes eosinophil survival and function by ensuring granule integrity. VIDEO ABSTRACT.


Assuntos
Brugia Malayi/imunologia , Sobrevivência Celular/imunologia , Cistatinas/genética , Cistatinas/imunologia , Grânulos Citoplasmáticos/metabolismo , Eosinófilos/imunologia , Filariose/imunologia , Animais , Sobrevivência Celular/genética , Células Cultivadas , Cisteína Proteases/metabolismo , Filariose/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA