Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Immunol ; 15: 1384467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605965

RESUMO

Introduction: The therapeutic potential of bispecific antibodies is becoming widely recognised, with over a hundred formats already described. For many applications, enhanced tissue penetration is sought, so bispecifics with low molecular weight may offer a route to enhanced potency. Here we report the design of bi- and tri-specific antibody-based constructs with molecular weights as low as 14.5 and 22 kDa respectively. Methods: Autonomous bovine ultra-long CDR H3 (knob domain peptide) modules have been engineered with artificial coiled-coil stalks derived from Sin Nombre orthohantavirus nucleocapsid protein and human Beclin-1, and joined in series to produce bi- and tri-specific antibody-based constructs with exceptionally low molecular weights. Results: Knob domain peptides with coiled-coil stalks retain high, independent antigen binding affinity, exhibit exceptional levels of thermal stability, and can be readily joined head-to-tail yielding the smallest described multi-specific antibody format. The resulting constructs are able to bind simultaneously to all their targets with no interference. Discussion: Compared to existing bispecific formats, the reduced molecular weight of the knob domain fusions may enable enhanced tissue penetration and facilitate binding to cryptic epitopes that are inaccessible to conventional antibodies. Furthermore, they can be easily produced at high yield as recombinant products and are free from the heavy-light chain mispairing issue. Taken together, our approach offers an efficient route to modular construction of minimalistic bi- and multi-specifics, thereby further broadening the therapeutic scope for knob domain peptides.


Assuntos
Anticorpos Biespecíficos , Animais , Bovinos , Humanos , Anticorpos Biespecíficos/química , Peptídeos , Proteínas do Nucleocapsídeo
2.
Front Immunol ; 14: 1170357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251411

RESUMO

Background: Serum albumin binding is an established mechanism to extend the serum half-life of antibody fragments and peptides. The cysteine rich knob domains, isolated from bovine antibody ultralong CDRH3, are the smallest single chain antibody fragments described to date and versatile tools for protein engineering. Methods: Here, we used phage display of bovine immune material to derive knob domains against human and rodent serum albumins. These were used to engineer bispecific Fab fragments, by using the framework III loop as a site for knob domain insertion. Results: By this route, neutralisation of the canonical antigen (TNFα) was retained but extended pharmacokinetics in-vivo were achieved through albumin binding. Structural characterisation revealed correct folding of the knob domain and identified broadly common but non-cross-reactive epitopes. Additionally, we show that these albumin binding knob domains can be chemically synthesised to achieve dual IL-17A neutralisation and albumin binding in a single chemical entity. Conclusions: This study enables antibody and chemical engineering from bovine immune material, via an accessible discovery platform.


Assuntos
Anticorpos Biespecíficos , Albumina Sérica , Animais , Bovinos , Humanos , Albumina Sérica/metabolismo , Fragmentos Fab das Imunoglobulinas , Epitopos , Técnicas de Visualização da Superfície Celular
3.
MAbs ; 14(1): 2138092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36418193

RESUMO

The propensity for some monoclonal antibodies (mAbs) to aggregate at physiological and manufacturing pH values can prevent their use as therapeutic molecules or delay time to market. Consequently, developability assessments are essential to select optimum candidates, or inform on mitigation strategies to avoid potential late-stage failures. These studies are typically performed in a range of buffer solutions because factors such as pH can dramatically alter the aggregation propensity of the test mAbs (up to 100-fold in extreme cases). A computational method capable of robustly predicting the aggregation propensity at the pH values of common storage buffers would have substantial value. Here, we describe a mAb aggregation prediction tool (MAPT) that builds on our previously published isotype-dependent, charge-based model of aggregation. We show that the addition of a homology model-derived hydrophobicity descriptor to our electrostatic aggregation model enabled the generation of a robust mAb developability indicator. To contextualize our aggregation scoring system, we analyzed 97 clinical-stage therapeutic mAbs. To further validate our approach, we focused on six mAbs (infliximab, tocilizumab, rituximab, CNTO607, MEDI1912 and MEDI1912_STT) which have been reported to cover a large range of aggregation propensities. The different aggregation propensities of the case study molecules at neutral and slightly acidic pH were correctly predicted, verifying the utility of our computational method.


Assuntos
Antineoplásicos Imunológicos , Imunoglobulina G , Imunoglobulina G/química , Anticorpos Monoclonais/química , Eletricidade Estática , Interações Hidrofóbicas e Hidrofílicas
4.
MAbs ; 14(1): 2076295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634719

RESUMO

Cysteine-rich knob domains can be isolated from the ultralong heavy-chain complementarity-determining region (CDR) 3, which are unique to a subset of bovine antibodies, to create antibody fragments of ~4 kDa. Advantageously, the N- and C- termini of these small binding domains are in close proximity, and we propose that this may offer a practical route to engineer extrinsic binding specificity into proteins. To test this, we transplanted knob domains into various loops of rat serum albumin, targeting sites that were distal to the interface with the neonatal Fc receptor. Using knob domains raised against the clinically validated drug target complement component C5, we produced potent inhibitors, which exhibit an extended plasma half-life in vivo via attenuated renal clearance and neonatal Fc receptor-mediated avoidance of lysosomal catabolism. The same approach was also used to modify a Camelid VHH, targeting a framework loop situated at the opposing end of the domain to the CDRs, to produce a small, single-chain bispecific antibody and a dual inhibitor of Complement C3 and C5. This study presents new protein inhibitors of the complement cascade and demonstrates a broadly applicable method to engineer target specificity within polypeptide chains, using bovine knob domains.


Assuntos
Anticorpos Biespecíficos , Regiões Determinantes de Complementaridade , Animais , Anticorpos Biespecíficos/química , Bovinos , Ativação do Complemento , Regiões Determinantes de Complementaridade/química , Domínios Proteicos , Ratos
5.
ACS Chem Biol ; 16(9): 1757-1769, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34406751

RESUMO

Cysteine-rich knob domains found in the ultralong complementarity determining regions of a subset of bovine antibodies are capable of functioning autonomously as 3-6 kDa peptides. While they can be expressed recombinantly in cellular systems, in this paper we show that knob domains are also readily amenable to a chemical synthesis, with a co-crystal structure of a chemically synthesized knob domain in complex with an antigen showing structural equivalence to the biological product. For drug discovery, following the immunization of cattle, knob domain peptides can be synthesized directly from antibody sequence data, combining the power and diversity of the bovine immune repertoire with the ability to rapidly incorporate nonbiological modifications. We demonstrate that, through rational design with non-natural amino acids, a paratope diversity can be massively expanded, in this case improving the efficacy of an allosteric peptide. As a potential route to further improve stability, we also performed head-to-tail cyclizations, exploiting the proximity of the N and C termini to synthesize functional, fully cyclic antibody fragments. Lastly, we highlight the stability of knob domains in plasma and, through pharmacokinetic studies, use palmitoylation as a route to extend the plasma half-life of knob domains in vivo. This study presents an antibody-derived medicinal chemistry platform, with protocols for solid-phase synthesis of knob domains, together with the characterization of their molecular structures, in vitro pharmacology, and pharmacokinetics.


Assuntos
Regiões Determinantes de Complementaridade/química , Fragmentos de Imunoglobulinas/química , Peptídeos Cíclicos/síntese química , Sequência de Aminoácidos , Animais , Bovinos , Fragmentos de Imunoglobulinas/sangue , Fragmentos de Imunoglobulinas/farmacologia , Masculino , Modelos Moleculares , Peptídeos Cíclicos/sangue , Peptídeos Cíclicos/farmacocinética , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Ratos Sprague-Dawley , Técnicas de Síntese em Fase Sólida , Espectrometria de Massas em Tandem , Termodinâmica
6.
Elife ; 102021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570492

RESUMO

Bovines have evolved a subset of antibodies with ultra-long heavy chain complementarity determining regions that harbour cysteine-rich knob domains. To produce high-affinity peptides, we previously isolated autonomous 3-6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors, and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential.


Antibodies are proteins produced by the immune system that can selectively bind to other molecules and modify their behaviour. Cows are highly equipped at fighting-off disease-causing microbes due to the unique shape of some of their antibodies. Unlike other jawed vertebrates, cows' antibodies contain an ultra-long loop region that contains a 'knob domain' which sticks out from the rest of the antibody. Recent research has shown that when detached, the knob domain behaves like an antibody fragment, and can independently bind to a range of different proteins. Antibody fragments are commonly developed in the laboratory to target proteins associated with certain diseases, such as arthritis and cancer. But it was unclear whether the knob domains from cows' antibodies could also have therapeutic potential. To investigate this, Macpherson et al. studied how knob domains attach to complement C5, a protein in the inflammatory pathway which is a drug target for various diseases, including severe COVID-19. The experiments identified various knob domains that bind to complement C5 and inhibits its activity by altering its structure or movement. Further tests studying the structure of these interactions, led to the discovery of a common mechanism by which inhibitors can modify the behaviour of this inflammatory protein. Complement C5 is involved in numerous molecular pathways in the immune system, which means many of the drugs developed to inhibit its activity can also leave patients vulnerable to infection. However, one of the knob domains identified by Macpherson et al. was found to reduce the activity of complement C5 in some pathways, whilst leaving other pathways intact. This could potentially reduce the risk of bacterial infections which sometimes arise following treatment with these types of inhibitors. These findings highlight a new approach for developing drug inhibitors for complement C5. Furthermore, the ability of knob domains to bind to multiple sites of complement C5 suggests that this fragment could be used to target proteins associated with other diseases.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Complemento C5/antagonistas & inibidores , Descoberta de Drogas , Peptídeos/química , Peptídeos/farmacologia , Animais , Bovinos , Complemento C5/química , Complemento C5/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica/efeitos dos fármacos
7.
Nat Commun ; 12(1): 582, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495441

RESUMO

Tumour necrosis factor (TNF) is a trimeric protein which signals through two membrane receptors, TNFR1 and TNFR2. Previously, we identified small molecules that inhibit human TNF by stabilising a distorted trimer and reduce the number of receptors bound to TNF from three to two. Here we present a biochemical and structural characterisation of the small molecule-stabilised TNF-TNFR1 complex, providing insights into how a distorted TNF trimer can alter signalling function. We demonstrate that the inhibitors reduce the binding affinity of TNF to the third TNFR1 molecule. In support of this, we show by X-ray crystallography that the inhibitor-bound, distorted, TNF trimer forms a complex with a dimer of TNFR1 molecules. This observation, along with data from a solution-based network assembly assay, leads us to suggest a model for TNF signalling based on TNF-TNFR1 clusters, which are disrupted by small molecule inhibitors.


Assuntos
Multimerização Proteica/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/química , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fator de Necrose Tumoral alfa/química , Algoritmos , Animais , Ligação Competitiva/efeitos dos fármacos , Humanos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Bibliotecas de Moléculas Pequenas/química , Fator de Necrose Tumoral alfa/metabolismo
8.
Nat Commun ; 12(1): 583, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495445

RESUMO

We have recently described the development of a series of small-molecule inhibitors of human tumour necrosis factor (TNF) that stabilise an open, asymmetric, signalling-deficient form of the soluble TNF trimer. Here, we describe the generation, characterisation, and utility of a monoclonal antibody that selectively binds with high affinity to the asymmetric TNF trimer-small molecule complex. The antibody helps to define the molecular dynamics of the apo TNF trimer, reveals the mode of action and specificity of the small molecule inhibitors, acts as a chaperone in solving the human TNF-TNFR1 complex crystal structure, and facilitates the measurement of small molecule target occupancy in complex biological samples. We believe this work defines a role for monoclonal antibodies as tools to facilitate the discovery and development of small-molecule inhibitors of protein-protein interactions.


Assuntos
Anticorpos Monoclonais/metabolismo , Complexos Multiproteicos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anticorpos Monoclonais/farmacologia , Células Cultivadas , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/química , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fator de Necrose Tumoral alfa/química
9.
PLoS Biol ; 18(9): e3000821, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886672

RESUMO

As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques.


Assuntos
Anticorpos/química , Dissulfetos/isolamento & purificação , Domínios de Imunoglobulina , Fragmentos de Peptídeos/isolamento & purificação , Domínios e Motivos de Interação entre Proteínas , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Afinidade de Anticorpos , Formação de Anticorpos , Especificidade de Anticorpos , Antígenos/genética , Antígenos/imunologia , Linfócitos B/fisiologia , Bovinos , Complemento C5/química , Complemento C5/genética , Complemento C5/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Dissulfetos/química , Dissulfetos/imunologia , Mapeamento de Epitopos/métodos , Humanos , Imunização , Domínios de Imunoglobulina/genética , Modelos Moleculares , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Domínios e Motivos de Interação entre Proteínas/genética
10.
Nat Commun ; 10(1): 5795, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857588

RESUMO

Tumour necrosis factor (TNF) is a cytokine belonging to a family of trimeric proteins; it has been shown to be a key mediator in autoimmune diseases such as rheumatoid arthritis and Crohn's disease. While TNF is the target of several successful biologic drugs, attempts to design small molecule therapies directed to this cytokine have not led to approved products. Here we report the discovery of potent small molecule inhibitors of TNF that stabilise an asymmetrical form of the soluble TNF trimer, compromising signalling and inhibiting the functions of TNF in vitro and in vivo. This discovery paves the way for a class of small molecule drugs capable of modulating TNF function by stabilising a naturally sampled, receptor-incompetent conformation of TNF. Furthermore, this approach may prove to be a more general mechanism for inhibiting protein-protein interactions.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/imunologia , Linhagem Celular , Cristalografia por Raios X , Descoberta de Drogas , Masculino , Camundongos , Simulação de Dinâmica Molecular , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Transdução de Sinais/imunologia , Relação Estrutura-Atividade , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/isolamento & purificação , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/ultraestrutura
11.
Ann Rheum Dis ; 77(4): 523-532, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29275332

RESUMO

OBJECTIVE: Interleukin (IL)-17A has emerged as pivotal in driving tissue pathology in immune-mediated inflammatory diseases. The role of IL-17F, sharing 50% sequence homology and overlapping biological function, remains less clear. We hypothesised that IL-17F, together with IL-17A, contributes to chronic tissue inflammation, and that dual neutralisation may lead to more profound suppression of inflammation than inhibition of IL-17A alone. METHODS: Preclinical experiments assessed the role of IL-17A and IL-17F in tissue inflammation using disease-relevant human cells. A placebo-controlled proof-of-concept (PoC) clinical trial randomised patients with psoriatic arthritis (PsA) to bimekizumab (n=39) or placebo (n=14). Safety, pharmacokinetics and clinical efficacy of multiple doses (weeks 0, 3, 6 (240 mg/160 mg/160 mg; 80 mg/40 mg/40 mg; 160 mg/80 mg/80 mg and 560 mg/320 mg/320 mg)) of bimekizumab, a humanised monoclonal IgG1 antibody neutralising both IL-17A and IL-17F, were investigated. RESULTS: IL-17F induced qualitatively similar inflammatory responses to IL-17A in skin and joint cells. Neutralisation of IL-17A and IL-17F with bimekizumab more effectively suppressed in vitro cytokine responses and neutrophil chemotaxis than inhibition of IL-17A or IL-17F alone. The PoC trial met both prespecified efficacy success criteria and showed rapid, profound responses in both joint and skin (pooled top three doses vs placebo at week 8: American College of Rheumatology 20% response criteria 80.0% vs 16.7% (posterior probability >99%); Psoriasis Area and Severity Index 100% response criteria 86.7% vs 0%), sustained to week 20, without unexpected safety signals. CONCLUSIONS: These data support IL-17F as a key driver of human chronic tissue inflammation and the rationale for dual neutralisation of IL-17A and IL-17F in PsA and related conditions. TRIAL REGISTRATION NUMBER: NCT02141763; Results.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/imunologia , Artrite Psoriásica/tratamento farmacológico , Interleucina-17/imunologia , Adulto , Anticorpos Monoclonais Humanizados/imunologia , Artrite Psoriásica/imunologia , Método Duplo-Cego , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-17/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Índice de Gravidade de Doença , Resultado do Tratamento
12.
Biophys J ; 113(2): 371-380, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28746848

RESUMO

Double electron-electron resonance in conjunction with site-directed spin labeling has been used to probe natural conformational sampling of the human tumor necrosis factor α trimer. We suggest a previously unreported, predeoligomerization conformation of the trimer that has been shown to be sampled at low frequency. A model of this trimeric state has been constructed based on crystal structures using the double-electron-electron-resonance distances. The model shows one of the protomers to be rotated and tilted outward at the tip end, leading to a breaking of the trimerous symmetry and distortion at a receptor-binding interface. The new structure offers opportunities to modulate the biological activity of tumor necrosis factor α through stabilization of the distorted trimer with small molecules.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Fator de Necrose Tumoral alfa/metabolismo , Escherichia coli , Humanos , Modelos Moleculares , Mutação , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Marcadores de Spin , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética
13.
Sci Rep ; 7: 37716, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134246

RESUMO

Protein:protein interactions are fundamental in living organism homeostasis. Here we introduce VHH6, a junctional epitope antibody capable of specifically recognizing a neo-epitope when two proteins interact, albeit transiently, to form a complex. Orthogonal biophysical techniques have been used to prove the "junctional epitope" nature of VHH6, a camelid single domain antibody recognizing the IL-6-gp80 complex but not the individual components alone. X-ray crystallography, HDX-MS and SPR analysis confirmed that the CDR regions of VHH6 interact simultaneously with IL-6 and gp80, locking the two proteins together. At the cellular level, VHH6 was able to alter the response of endothelial cells to exogenous IL-6, promoting a sustained STAT3 phosphorylation signal, an accumulation of IL-6 in vesicles and an overall pro-inflammatory phenotype supported further by transcriptomic analysis. Junctional epitope antibodies, like VHH6, not only offer new opportunities in screening and structure-aided drug discovery, but could also be exploited as therapeutics to modulate complex protein:protein interactions.


Assuntos
Anticorpos/química , Mapeamento de Epitopos , Interleucina-6/imunologia , Receptores de Interleucina-6/imunologia , Animais , Anticorpos/imunologia , Células CHO , Camelus/imunologia , Cricetulus , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Fosforilação , Estrutura Terciária de Proteína , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
14.
Arthritis Res Ther ; 17: 234, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26335795

RESUMO

INTRODUCTION: CD40 ligand (CD40L) blockade has demonstrated efficacy in experimental autoimmune models. However, clinical trials of hu5c8, an anti-human CD40L IgG1 antibody, in systemic lupus erythematosus (SLE) were halted due to an increased incidence of thrombotic events. This study evaluated CDP7657, a high affinity PEGylated monovalent Fab' anti-CD40L antibody fragment, to assess whether an Fc-deficient molecule retains efficacy while avoiding the increased risk of thrombotic events observed with hu5c8. METHODS: The potency and cross-reactivity of CDP7657 was assessed in in vitro assays employing human and non-human primate leukocytes, and the capacity of different antibody formats to activate platelets in vitro was assessed using aggregometry and dense granule release assays. Given the important role CD40L plays in regulating humoral immunity, in vivo efficacy was assessed by investigating the capacity of Cynomolgus monkeys to generate immune responses to the tetanus toxoid antigen while the potential to induce thrombotic events in vivo was evaluated after repeat dosing of antibodies to Rhesus monkeys. A PEGylated anti-mouse CD40L was generated to assess efficacy in the New Zealand Black/White (NZB/W) mouse model of SLE. RESULTS: CDP7657 dose-dependently inhibited antigen-specific immune responses to tetanus toxoid in Cynomolgus monkeys, and in contrast to hu5c8, there was no evidence of pulmonary thrombovasculopathy in Rhesus monkeys. Aglycosyl hu5c8, which lacks Fc receptor binding function, also failed to induce thrombotic events in Rhesus monkeys. In vitro experiments confirmed that antibody constructs lacking an Fc, including CDP7657, did not induce human or monkey platelet activation. A PEGylated monovalent Fab' anti-mouse CD40L antibody also inhibited disease activity in the NZB/W mouse model of SLE after administration using a therapeutic dosing regimen where mice received antibodies only after they had displayed severe proteinuria. CONCLUSIONS: These findings demonstrate for the first time that anti-CD40L antibodies lacking a functional Fc region do not induce thrombotic events in Rhesus monkeys and fail to activate platelets in vitro but, nevertheless retain pharmacological activity and support the investigation of CDP7657 as a potential therapy for systemic lupus erythematosus and other autoimmune diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Ligante de CD40/imunologia , Imunidade Humoral/imunologia , Trombose/imunologia , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Formação de Anticorpos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/prevenção & controle , Modelos Animais de Doenças , Humanos , Imunidade Humoral/efeitos dos fármacos , Fragmentos Fab das Imunoglobulinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Macaca fascicularis , Macaca mulatta , Camundongos Endogâmicos NZB , Polietilenoglicóis/química , Toxoide Tetânico/imunologia , Trombose/induzido quimicamente
15.
MAbs ; 7(1): 180-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25524068

RESUMO

The Wnt signaling pathway is of central importance in embryogenesis, development and adult tissue homeostasis, and dysregulation of this pathway is associated with cancer and other diseases. Despite the developmental and potential therapeutic significance of this pathway, many aspects of Wnt signaling, including the control of the master transcriptional co-activator ß-catenin, remain poorly understood. In order to explore this aspect, a diverse immune llama VHH phagemid library was constructed and panned against ß-catenin. VHH antibody fragments from the library were expressed intracellularly, and a number of antibodies were shown to possess function-modifying intracellular activity in a luciferase-based Wnt signaling HEK293 reporter bioassay. Further characterization of one such VHH (named LL3) confirmed that it bound endogenous ß-catenin, and that it inhibited the Wnt signaling pathway downstream of the destruction complex, while production of a control Ala-substituted complementarity-determining region (CDR)3 mutant demonstrated that the inhibition of ß-catenin activity by the parent intracellular antibody was dependent on the specific CDR sequence of the antibody.


Assuntos
Regiões Determinantes de Complementaridade/biossíntese , Anticorpos de Cadeia Única/biossíntese , Via de Sinalização Wnt , beta Catenina/antagonistas & inibidores , Sítios de Ligação de Anticorpos , Regiões Determinantes de Complementaridade/genética , Células HEK293 , Humanos , Anticorpos de Cadeia Única/genética , beta Catenina/genética , beta Catenina/metabolismo
16.
MAbs ; 6(3): 774-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24670876
17.
J Biol Chem ; 289(10): 7200-7210, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24436329

RESUMO

Specific, high affinity protein-protein interactions lie at the heart of many essential biological processes, including the recognition of an apparently limitless range of foreign proteins by natural antibodies, which has been exploited to develop therapeutic antibodies. To mediate biological processes, high affinity protein complexes need to form on appropriate, relatively rapid timescales, which presents a challenge for the productive engagement of complexes with large and complex contact surfaces (∼600-1800 Å(2)). We have obtained comprehensive backbone NMR assignments for two distinct, high affinity antibody fragments (single chain variable and antigen-binding (Fab) fragments), which recognize the structurally diverse cytokines interleukin-1ß (IL-1ß, ß-sheet) and interleukin-6 (IL-6, α-helical). NMR studies have revealed that the hearts of the antigen binding sites in both free anti-IL-1ß Fab and anti-IL-6 single chain variable exist in multiple conformations, which interconvert on a timescale comparable with the rates of antibody-antigen complex formation. In addition, we have identified a conserved antigen binding-induced change in the orientation of the two variable domains. The observed conformational heterogeneity and slow dynamics at protein antigen binding sites appears to be a conserved feature of many high affinity protein-protein interfaces structurally characterized by NMR, suggesting an essential role in protein complex formation. We propose that this behavior may reflect a soft capture, protein-protein docking mechanism, facilitating formation of high affinity protein complexes on a timescale consistent with biological processes.


Assuntos
Anticorpos Monoclonais Humanizados/química , Afinidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Antígenos/imunologia , Fragmentos Fab das Imunoglobulinas/química , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Sequência de Aminoácidos , Antígenos/química , Humanos , Interleucina-1beta/química , Interleucina-6/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
18.
MAbs ; 6(1): 143-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24423622

RESUMO

Single B cell technologies, which avoid traditional hybridoma fusion and combinatorial display, provide a means to interrogate the naturally-selected antibody repertoire of immunized animals. Many methods enable the sampling of memory B cell subsets, but few allow for the direct interrogation of the plasma cell repertoire, i.e., the subset of B cells responsible for producing immunoglobulin in serum. Here, we describe the use of a robust and simple fluorescence-based technique, called the fluorescent foci method, for the identification and isolation of antigen-specific IgG-secreting cells, such as plasma cells, from heterogeneous bone marrow preparations. Following micromanipulation of single cells, cognate pairs of heavy and light chain variable region genes were recovered by reverse transcription (RT)-polymerase chain reaction (PCR). During the PCR, variable regions were combined with a promoter fragment and a relevant constant region fragment to produce two separate transcriptionally-active PCR (TAP) fragments that were directly co-transfected into a HEK-293F cell line for recombinant antibody expression. The technique was successfully applied to the generation of a diverse panel of high-affinity, functional recombinant antibodies to human tumor necrosis factor (TNF) receptor 2 and TNF derived from the bone marrow of immunized rabbits and rats, respectively. Progression from a bone marrow sample to a panel of functional recombinant antibodies was possible within a 2-week timeframe.


Assuntos
Anticorpos Monoclonais , Células da Medula Óssea/imunologia , Imunoglobulina G , Plasmócitos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Anticorpos de Cadeia Única , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Fluorescência , Células HEK293 , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Masculino , Plasmócitos/citologia , Coelhos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Fatores de Tempo
19.
J Biol Chem ; 287(47): 40043-50, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027872

RESUMO

A number of secreted cytokines, such as interleukin-6 (IL-6), are attractive targets for the treatment of inflammatory diseases. We have determined the solution structure of mouse IL-6 to assess the functional significance of apparent differences in the receptor interaction sites (IL-6Rα and gp130) suggested by the fairly low degree of sequence similarity with human IL-6. Structure-based sequence alignment of mouse IL-6 and human IL-6 revealed surprising differences in the conservation of the two distinct gp130 binding sites (IIa and IIIa), which suggests a primacy for site III-mediated interactions in driving initial assembly of the IL-6/IL-6Rα/gp130 ternary complex. This is further supported by a series of direct binding experiments, which clearly demonstrate a high affinity IL-6/IL-6Rα-gp130 interaction via site III but only weak binding via site II. Collectively, our findings suggest a pathway for the evolution of the hexameric, IL-6/IL-6Rα/gp130 signaling complex and strategies for therapeutic targeting. We propose that the signaling complex originally involved specific interactions between IL-6 and IL-6Rα (site I) and between the D1 domain of gp130 and IL-6/IL-6Rα (site III), with the later inclusion of interactions between the D2 and D3 domains of gp130 and IL-6/IL-6Rα (site II) through serendipity. It seems likely that IL-6 signaling benefited from the evolution of a multipurpose, nonspecific protein interaction surface on gp130, now known as the cytokine binding homology region (site II contact surface), which fortuitously contributes to stabilization of the IL-6/IL-6Rα/gp130 signaling complex.


Assuntos
Receptor gp130 de Citocina/química , Evolução Molecular , Interleucina-6/química , Complexos Multiproteicos/química , Receptores de Interleucina-6/química , Animais , Sítios de Ligação , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/terapia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mapeamento de Peptídeos/métodos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Alinhamento de Sequência
20.
J Immunother ; 34(6): 469-79, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21654519

RESUMO

The identification of the optimal T-cell effector subtype is a crucial issue for adoptive cell therapy with chimeric receptor-modified T cells. The ideal T cell population must be able to home toward tumor site, exert prolonged antitumoral activity, and display minimal toxicity against normal tissues. Therefore, we characterized the in vitro antitumoral properties of three effector T-cell populations: Epstein-Barr virus-specific cytotoxic T lymphocytes (EBV-CTLs), cytokine-induced killer (CIK) cells, and γ9δ2 T (GDT) cells, after transduction with a chimeric receptor specific for the CD33 antigen, broadly expressed on acute myeloid leukemia cells. EBV-CTLs, CIK, and GDT cells were generated and transduced with high efficiency with a retroviral vector coding for an anti-CD33-ζ chimeric receptor without alterations of their native phenotype. Anti-CD33-ζ chimeric receptor-redirected T cells displayed analogous in vitro chemotactic activity toward CXCL12. In addition, anti-CD33-ζ chimeric receptor-expressing EBV-CTLs, CIK, and GDT cells showed potent and similar cytotoxicity against several CD33⁺ leukemic targets both in short-term 4-hours-5¹chromium-release assays (mean killing vs primary leukemic cells at effector:target ratio of 5:1; 50%, 61%, and 50% for EBV-CTLs, CIK, and GDT cells, respectively) and in long-term assays, where they were cocultured with leukemic cells for 6 days on stromal mesenchymal cells (mean survival of primary leukemic cells at effector:target ratio of 1:100; 18%, 16%, and 29% for EBV-CTLs, CIK, and GDT cells, respectively). Moreover, all effector cells acquired consistent capability to proliferate in vitro after contact with CD33⁺ cells and to release high and comparable levels of immunostimulatory cytokines, while secreting similar low amount of immunoregulatory cytokines as the unmanipulated counterpart. Our results indicate that expression of an anti-CD33-ζ chimeric receptor potently and similarly increase the antileukemic functions of different effector T-cell subtypes, underlying the impossibility to identify a more potent T-cell population through in vitro analysis, and consistently with recent observations that have emerged from clinical trials with chimeric receptor-modified T cells, suggesting the need to perform such type of studies in the human setting.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Quimerismo , Leucemia/imunologia , Leucemia/terapia , Receptores de Antígenos de Linfócitos T , Linfócitos T/imunologia , Linfócitos T/metabolismo , Complexo CD3/genética , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/imunologia , Criança , Vetores Genéticos/genética , Células HL-60 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Humanos , Células K562 , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA