RESUMO
Promiscuous inhibitors of tyrosine protein kinases, proteases and phosphatases are useful reagents for probing regulatory pathways and stabilizing lysates as well as starting points for the design of more selective agents. Ubiquitination regulates many critical cellular processes, and promiscuous inhibitors of deubiquitinases (DUBs) would be similarly valuable. The currently available promiscuous DUB inhibitors are highly reactive electrophilic compounds that can crosslink proteins. Herein we introduce diarylcarbonate esters as a novel class of promiscuous DUB inhibitors that do not have the liabilities associated with the previously reported compounds. Diarylcarbonates stabilize the high molecular weight ubiquitin pools in cells and lysates. They also elicit cellular phenotypes associated with DUB inhibition, demonstrating their utility in ubiquitin discovery. Diarylcarbonates may also be a useful scaffold for the development of specific DUB inhibitors.
Assuntos
Carbonatos/farmacologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Carbonatos/síntese química , Carbonatos/química , Enzimas Desubiquitinantes/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Ubiquitinação/efeitos dos fármacosRESUMO
New drugs and molecular targets are urgently needed to address the emergence and spread of drug-resistant tuberculosis. Mycobacterium tuberculosis ( Mtb) inosine 5'-monophosphate dehydrogenase 2 ( MtbIMPDH2) is a promising yet controversial potential target. The inhibition of MtbIMPDH2 blocks the biosynthesis of guanine nucleotides, but high concentrations of guanine can potentially rescue the bacteria. Herein we describe an expansion of the structure-activity relationship (SAR) for the benzoxazole series of MtbIMPDH2 inhibitors and demonstrate that minimum inhibitory concentrations (MIC) of ≤1 µM can be achieved. The antibacterial activity of the most promising compound, 17b (Q151), is derived from the inhibition of MtbIMPDH2 as demonstrated by conditional knockdown and resistant strains. Importantly, guanine does not change the MIC of 17b, alleviating the concern that guanine salvage can protect Mtb in vivo. These findings suggest that MtbIMPDH2 is a vulnerable target for tuberculosis.
Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , IMP Desidrogenase/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
Cruciferous vegetables such as broccoli and kale have well documented chemopreventative and anticancer effects that are attributed to the presence of isothiocyanates (ITCs). ITCs modulate the levels of many oncogenic proteins, but the molecular mechanisms of ITC action are not understood. We previously reported that phenethyl isothiocyanate (PEITC) inhibits two deubiquitinases (DUBs), USP9x and UCH37. DUBs regulate many cellular processes and DUB dysregulation is linked to the pathogenesis of human diseases including cancer, neurodegeneration, and inflammation. Using SILAC assisted quantitative mass spectrometry, here we identify 9 new PEITC-DUB targets: USP1, USP3, USP10, USP11, USP16, USP22, USP40, USP48 and VCPIP1. Seven of these PEITC-sensitive DUBs have well-recognized roles in DNA repair or chromatin remodeling. PEITC both inhibits USP1 and increases its ubiquitination and degradation, thus decreasing USP1 activity by two mechanisms. The loss of USP1 activity increases the level of mono-ubiquitinated DNA clamp PCNA, impairing DNA repair. Both the inhibition/degradation of USP1 and the increase in mono-ubiquitinated PCNA are new activities for PEITC that can explain the previously recognized ability of ITCs to enhance cancer cell sensitivity to cisplatin treatment. Our work also demonstrates that PEITC reduces the mono-ubiquityl histones H2A and H2B. Understanding the mechanism of action of ITCs should facilitate their use as therapeutic agents.
RESUMO
The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates such as benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC). While many potential targets of isothiocyanates have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUB), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the antiapoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These isothiocyanates increased Mcl-1 ubiquitination and either isothiocyanate treatment, or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of isothiocyanate activity. These isothiocyanates also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low isothiocyanate concentrations and aggregation under high isothiocyanate concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by isothiocyanate treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well-established anticancer activity of isothiocyanate. We propose that the isothiocyanate-induced inhibition of DUBs may also explain how isothiocyanates affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of isothiocyanates to treat cancer as well as a variety of other pathologic conditions.