Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36039640

RESUMO

Fascin is an important regulator of F-actin bundling leading to enhanced filopodia assembly. Fascin is also overexpressed in most solid tumours where it supports invasion through control of F-actin structures at the periphery and nuclear envelope. Recently, fascin has been identified in the nucleus of a broad range of cell types but the contributions of nuclear fascin to cancer cell behaviour remain unknown. Here, we demonstrate that fascin bundles F-actin within the nucleus to support chromatin organisation and efficient DDR. Fascin associates directly with phosphorylated Histone H3 leading to regulated levels of nuclear fascin to support these phenotypes. Forcing nuclear fascin accumulation through the expression of nuclear-targeted fascin-specific nanobodies or inhibition of Histone H3 kinases results in enhanced and sustained nuclear F-actin bundling leading to reduced invasion, viability, and nuclear fascin-specific/driven apoptosis. These findings represent an additional important route through which fascin can support tumourigenesis and provide insight into potential pathways for targeted fascin-dependent cancer cell killing.


Assuntos
Actinas , Neoplasias , Actinas/metabolismo , Proteínas de Transporte , Sobrevivência Celular , Histonas , Humanos , Proteínas dos Microfilamentos , Neoplasias/patologia
2.
J Cell Biol ; 219(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32294157

RESUMO

Filopodia are peripheral F-actin-rich structures that enable cell sensing of the microenvironment. Fascin is an F-actin-bundling protein that plays a key role in stabilizing filopodia to support efficient adhesion and migration. Fascin is also highly up-regulated in human cancers, where it increases invasive cell behavior and correlates with poor patient prognosis. Previous studies have shown that fascin phosphorylation can regulate F-actin bundling, and that this modification can contribute to subcellular fascin localization and function. However, the factors that regulate fascin dynamics within filopodia remain poorly understood. In the current study, we used advanced live-cell imaging techniques and a fascin biosensor to demonstrate that fascin phosphorylation, localization, and binding to F-actin are highly dynamic and dependent on local cytoskeletal architecture in cells in both 2D and 3D environments. Fascin dynamics within filopodia are under the control of formins, and in particular FMNL2, that binds directly to dephosphorylated fascin. Our data provide new insight into control of fascin dynamics at the nanoscale and into the mechanisms governing rapid cytoskeletal adaptation to environmental changes. This filopodia-driven exploration stage may represent an essential regulatory step in the transition from static to migrating cancer cells.


Assuntos
Actinas/genética , Proteínas de Transporte/genética , Forminas/genética , Proteínas dos Microfilamentos/genética , Neoplasias/genética , Pseudópodes/genética , Técnicas Biossensoriais , Proteínas de Transporte/isolamento & purificação , Adesão Celular/genética , Movimento Celular/genética , Microambiente Celular/genética , Células HeLa , Humanos , Proteínas dos Microfilamentos/isolamento & purificação , Imagem Molecular , Neoplasias/patologia , Fosforilação , Ligação Proteica/genética , Pseudópodes/metabolismo
3.
Small GTPases ; 9(4): 290-296, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27657701

RESUMO

Like RAS proteins, the aberrant function of RHO family small GTPases has been implicated in driving cancer development and growth. However, unlike the RAS family, where gain-of-function missense mutations are found in ∼25% of all human cancers, missense mutations are relatively rare in RHO proteins. Instead, altered RHO activity in cancer more commonly arises through the aberrant functions of RHO GTPase regulators. In many cancer types, altered expression and/or mutation of RHO-selective guanine nucleotide exchange factors (RHOGEFs) or GTPase-activating proteins (RHOGAPs), which activate or inactivate RHO GTPases, respectively, is observed. For example, deletion or loss of expression of the RHOA GAP DLC1 is well-established to drive cancer growth. Recently, we identified high expression of 2 RHOGAPs, ARHGAP11A and RACGAP1, in the basal-like breast cancer subtype. Unexpectedly, both of these RHOA GAPs exhibited properties of oncoproteins rather than tumor suppressors, in contrast to DLC1. In this commentary, we summarize our findings and speculate that different RHOA GAPs can play distinct roles in cancer depending on their spatial regulation and cancer type context. We also evaluate our results in light of recently-described cancer genome sequencing studies that have identified loss-of-function mutations of RHOA in specific cancer types.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Proteínas Ativadoras de GTPase/metabolismo , Oncogenes , Animais , Neoplasias da Mama/patologia , Proteínas Ativadoras de GTPase/genética , Humanos
4.
Cancer Res ; 76(13): 3826-37, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27216196

RESUMO

The basal-like breast cancer (BLBC) subtype accounts for a disproportionately high percentage of overall breast cancer mortality. The current therapeutic options for BLBC need improvement; hence, elucidating signaling pathways that drive BLBC growth may identify novel targets for the development of effective therapies. Rho GTPases have previously been implicated in promoting tumor cell proliferation and metastasis. These proteins are inactivated by Rho-selective GTPase-activating proteins (RhoGAP), which have generally been presumed to act as tumor suppressors. Surprisingly, RNA-Seq analysis of the Rho GTPase signaling transcriptome revealed high expression of several RhoGAP genes in BLBC tumors, raising the possibility that these genes may be oncogenic. To evaluate this, we examined the roles of two of these RhoGAPs, ArhGAP11A (also known as MP-GAP) and RacGAP1 (also known as MgcRacGAP), in promoting BLBC. Both proteins were highly expressed in human BLBC cell lines, and knockdown of either gene resulted in significant defects in the proliferation of these cells. Knockdown of ArhGAP11A caused CDKN1B/p27-mediated arrest in the G1 phase of the cell cycle, whereas depletion of RacGAP1 inhibited growth through the combined effects of cytokinesis failure, CDKN1A/p21-mediated RB1 inhibition, and the onset of senescence. Random migration was suppressed or enhanced by the knockdown of ArhGAP11A or RacGAP1, respectively. Cell spreading and levels of GTP-bound RhoA were increased upon depletion of either RhoGAP. We have established that, via the suppression of RhoA, ArhGAP11A and RacGAP1 are both critical drivers of BLBC growth, and propose that RhoGAPs can act as oncogenes in cancer. Cancer Res; 76(13); 3826-37. ©2016 AACR.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Proteínas Ativadoras de GTPase/metabolismo , Perfilação da Expressão Gênica , Proteínas rho de Ligação ao GTP/metabolismo , Apoptose , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Senescência Celular , Citocinese , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Ligação Proteica , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas rho de Ligação ao GTP/genética
5.
J Cell Sci ; 127(Pt 11): 2589-600, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24659802

RESUMO

G-protein-coupled receptors (GPCRs) regulate the organisation of the actin cytoskeleton by activating the Rac subfamily of small GTPases. The guanine-nucleotide-exchange factor (GEF) P-Rex1 is engaged downstream of GPCRs and phosphoinositide 3-kinase (PI3K) in many cell types, and promotes tumorigenic signalling and metastasis in breast cancer and melanoma, respectively. Although P-Rex1-dependent functions have been attributed to its GEF activity towards Rac1, we show that P-Rex1 also acts as a GEF for the Rac-related GTPase RhoG, both in vitro and in GPCR-stimulated primary mouse neutrophils. Furthermore, loss of either P-Rex1 or RhoG caused equivalent reductions in GPCR-driven Rac activation and Rac-dependent NADPH oxidase activity, suggesting they both function upstream of Rac in this system. Loss of RhoG also impaired GPCR-driven recruitment of the Rac GEF DOCK2, and F-actin, to the leading edge of migrating neutrophils. Taken together, our results reveal a new signalling hierarchy in which P-Rex1, acting as a GEF for RhoG, regulates Rac-dependent functions indirectly through RhoG-dependent recruitment of DOCK2. These findings thus have broad implications for our understanding of GPCR signalling to Rho GTPases and the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neutrófilos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Neoplasias da Mama , Carcinogênese , Movimento Celular/genética , Polaridade Celular/genética , Células Cultivadas , GTP Fosfo-Hidrolases/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Melanoma , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Proteínas rho de Ligação ao GTP
6.
J Immunol ; 186(3): 1467-76, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21178006

RESUMO

G protein-coupled receptor (GPCR) activation elicits neutrophil responses such as chemotaxis and reactive oxygen species (ROS) formation, which depend on the small G protein Rac and are essential for host defense. P-Rex and Vav are two families of guanine-nucleotide exchange factors (GEFs) for Rac, which are activated through distinct mechanisms but can both control GPCR-dependent neutrophil responses. It is currently unknown whether they play specific roles or whether they can compensate for each other in controlling these responses. In this study, we have assessed the function of neutrophils from mice deficient in P-Rex and/or Vav family GEFs. We found that both the P-Rex and the Vav family are important for LPS priming of ROS formation, whereas particle-induced ROS responses and cell spreading are controlled by the Vav family alone. Surprisingly, fMLF-stimulated ROS formation, adhesion, and chemotaxis were synergistically controlled by P-Rex1 and Vav1. These responses were more severely impaired in neutrophils lacking both P-Rex1 and Vav1 than those lacking the entire P-Rex family, the entire Vav family, or both P-Rex1 and Vav3. P-Rex1/Vav1 (P1V1) double-deficient cells also showed the strongest reduction in fMLF-stimulated activation of Rac1 and Rac2. This reduction in Rac activity may be sufficient to cause the defects observed in fMLF-stimulated P1V1 neutrophil responses. Additionally, Mac-1 surface expression was reduced in P1V1 cells, which might contribute further to defects in responses involving integrins, such as GPCR-stimulated adhesion and chemotaxis. We conclude that P-Rex1 and Vav1 together are the major fMLFR-dependent Dbl family Rac-GEFs in neutrophils and cooperate in the control of fMLF-stimulated neutrophil responses.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-vav/fisiologia , Animais , Adesão Celular/imunologia , Linhagem Celular , Quimiotaxia de Leucócito/imunologia , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/biossíntese , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-vav/deficiência , Proteínas Proto-Oncogênicas c-vav/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Proteínas rac de Ligação ao GTP/biossíntese , Proteínas rac1 de Ligação ao GTP , Proteína RAC2 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA