Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 81: 455-469, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271868

RESUMO

Neonatal brain development can be disrupted by infection that results in microglial cell activation and neuroinflammation. Studies indicate that polyunsaturated fatty acids (PUFAs) and their metabolites can resolve inflammation. It is not known if dietary PUFA increases lipid metabolites in brain or reduces neuroinflammation in neonates. We hypothesized that dietary PUFAs might suppress neuroinflammation by inhibiting pro-inflammatory cytokine over-production and promoting inflammatory resolution in the periphery and brain. Piglets were obtained on postnatal day (PD) 2 and randomly assigned to herring roe oil (HRO) or control (CON) diet. HRO was included at 2 g/kg powdered diet. HRO increased DHA levels in occipital lobe and the DHA to arachidonic acid (ARA) ratio in hippocampal tissue. HRO decreased ARA metabolites in occipital lobe. HRO failed to attenuate microglial pro-inflammatory cytokine production ex vivo. HRO did not affect fever or circulating resolvin D1 levels. HRO decreased circulating neutrophils and liver inflammatory gene expression, but increased resolution marker gene expression in liver post LPS. HRO upregulated CXCL16, TGFBR1, and C1QA in microglial cells. HRO supplementation exerted beneficial effects on inflammation in the periphery, but further studies are needed to evaluate the specific effects of omega-3 supplementation on microglial cell physiology in the neonate.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Expressão Gênica/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ácido Araquidônico/metabolismo , Encéfalo/metabolismo , Quimiocina CXCL16/genética , Citocinas/metabolismo , Suplementos Nutricionais , Ovos , Ácidos Graxos Insaturados/metabolismo , Feminino , Peixes/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Microglia/metabolismo , Lobo Occipital/efeitos dos fármacos , Lobo Occipital/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Suínos
2.
Front Immunol ; 7: 422, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27799931

RESUMO

Elevated levels of circulating pro-inflammatory cytokines are associated with symptomology of several psychiatric disorders, notably major depressive disorder. Symptomology has been linked to inflammation/cytokine-dependent induction of the Kynurenine Pathway. Galectins, like pro-inflammatory cytokines, play a role in neuroinflammation and the pathogenesis of several neurological disorders but without a clearly defined mechanism of action. Their involvement in the Kynurenine Pathway has not been investigated. Thus, we searched for a link between galectins and the Kynurenine Pathway using in vivo and ex vivo models. Mice were administered LPS and pI:C to determine if galectins (Gal's) were upregulated in the brain following in vivo inflammatory challenges. We then used organotypic hippocampal slice cultures (OHSCs) to determine if Gal's, alone or with inflammatory mediators [interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα), interleukin-1beta (IL-1ß), polyinosine-polycytidylic acid (pI:C), and dexamethasone (Dex; synthetic glucocorticoid)], would increase expression of indoleamine/tryptophan-2,3-dioxygenases (DO's: Ido1, Ido2, and Tdo2; Kynurenine Pathway rate-limiting enzymes). In vivo, hippocampal expression of cytokines (IL-1ß, TNFα, and IFNγ), Gal-3, and Gal-9 along with Ido1 and Ido2 were increased by LPS and pI:C (bacterial and viral mimetics). Of the cytokines induced in vivo, only IFNγ increased expression of two Ido1 transcripts (Ido1-FL and Ido1-v1) by OHSCs. Although ineffective alone, Gal-9 accentuated IFNγ-induced expression of only Ido1-FL. Similarly, IFNγ induced expression of several Ido2 transcripts (Ido2-v1, Ido2-v3, Ido2-v4, Ido2-v5, and Ido2-v6). Gal-9 accentuated IFNγ-induced expression of only Ido2-v1. Surprisingly, Gal-9 alone, slightly but significantly, induced expression of Tdo2 (Tdo2-v1 and Tdo2-v2, but not Tdo2-FL). These effects were specific to Gal-9 as Gal-1 and Gal-3 did not alter DO expression. These results are the first to show that brain Gal-9 is increased during LPS- and pI:C-induced neuroinflammation. Increased expression of Gal-9 may be critical for neuroinflammation-dependent induction of DO expression, either acting alone (Tdo2-v1 and Tdo2-v2) or to enhance IFNγ activity (Ido1-FL and Ido2-v1). Although these novel actions of Gal-9 are described for hippocampus, they have the potential to operate as DO-dependent immunomodulatory processes outside the brain. With the expanding implications of Kynurenine Pathway activation across multiple immune and psychiatric disorders, this synergy provides a new target for therapeutic development.

3.
PLoS One ; 11(6): e0157727, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27314674

RESUMO

Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome under unchallenged conditions.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/genética , Transcriptoma/genética , Processamento Alternativo , Animais , Encéfalo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo
4.
PLoS One ; 11(3): e0150858, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26959683

RESUMO

Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis.


Assuntos
Depressão/genética , Depressão/imunologia , Microglia/metabolismo , Transcriptoma/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Vacina BCG/imunologia , Vacina BCG/farmacologia , Comportamento Animal , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Software , Transcriptoma/efeitos dos fármacos
5.
Metabolism ; 63(9): 1131-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25016520

RESUMO

OBJECTIVES: Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that last beyond an acute elevation in plasma FFAs. METHODS: Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 h after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. RESULTS: In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hours after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24h after palmitic acid treatment. CONCLUSIONS: Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/etiologia , Ácidos Graxos não Esterificados/efeitos adversos , Neurônios/metabolismo , Ácido Palmítico/efeitos adversos , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Ansiedade/sangue , Comportamento Animal , Córtex Cerebral/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/administração & dosagem , Ácidos Graxos não Esterificados/sangue , Regulação da Expressão Gênica , Hipocampo/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Hiperfagia/metabolismo , Hiperfagia/fisiopatologia , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ácido Palmítico/administração & dosagem , Ácido Palmítico/sangue
6.
J Neuroinflammation ; 10: 54, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23634700

RESUMO

BACKGROUND: Interleukin-1 beta converting enzyme (ICE, caspase 1) is a cysteine protease that processes immature pro-IL-1ß into active mature IL-1ß. IL-1ß is a pro-inflammatory cytokine that mediates many of the physiological and behavioral responses to inflammation. Genetic deletion of ICE has previously been shown to prevent some negative physiologic responses to lipopolysaccharide (LPS)-induced inflammation. METHODS: Here we used a preclinical murine model to test the hypothesis that ICE is necessary for development of depression-like behaviors following intracerebroventricular (ICV) treatment with LPS. Adult male ICE knockout (ICE KO) and congenic wild-type C57BL/6 J (WT) mice were administered LPS either ICV at 100 ng/mouse or intraperitoneally (IP) at 830 µg/kg body weight or an equal volume of saline as controls. Mice were monitored up to 48 h after treatment for both sickness and depression-like behaviors. RESULTS: LPS given ICV induced a loss of body weight in both WT and ICE KO mice. This sickness response was similar between WT and ICE KO mice. As expected, LPS administered ICV increased immobility in the forced swim test (FST) and decreased sucrose preference in WT mice but no change in either of these two depression-like behaviors was observed in ICE KO mice. Expression of TNF-α and CD11b in brain was lower in ICE-KO mice at 24 h following ICV administration of LPS compared to WT mice. In contrast, when LPS was given systemically, sickness response, depression-like behaviors, and expression of these genes were similar between the two strains of mice. CONCLUSIONS: These findings indicate that ICE plays a specific role in depression-like behavior induced by a central inflammatory stimuli even though it is not required when LPS is administered systemically.


Assuntos
Caspase 1/metabolismo , Depressão/induzido quimicamente , Depressão/enzimologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Química Encefálica/genética , Antígeno CD11b/biossíntese , Caspase 1/genética , Inibidores de Caspase/farmacologia , Citocinas/metabolismo , Depressão/psicologia , Preferências Alimentares , Injeções Intraventriculares , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Sacarose , Natação/psicologia , Fator de Necrose Tumoral alfa/biossíntese
7.
J Neuroinflammation ; 8: 88, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21810259

RESUMO

BACKGROUND: We have established that activation of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO) mediates the switch from cytokine-induced sickness behavior to depressive-like behavior. Because human immunodeficiency virus type 1 (HIV-1) Tat protein causes depressive-like behavior in mice, we investigated its ability to activate IDO in organotypic hippocampal slice cultures (OHSCs) derived from neonatal C57BL/6 mice. METHODS: Depressive-like behavior in C57BL/6J mice was assessed by the forced swim test. Expression of cytokines and IDO mRNA in OHSCs was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs). p38 MAPK phosphorylation was analyzed by western blot. RESULTS: Intracerebroventricular (i.c.v.) administration of Tat (40 ng) induced depressive-like behavior in the absence of sickness. Addition of Tat (40 ng/slice) to the medium of OHSCs induced IDO steady-state mRNA that peaked at 6 h. This effect was potentiated by pretreatment with IFNγ. Tat also induced the synthesis and release of TNFα and IL-6 protein in the supernatant of the slices and increased expression of the inducible isoform of nitric oxide synthase (iNOS) and the serotonin transporter (SERT). Tat had no effect on endogenous synthesis of IFNγ. To explore the mechanisms of Tat-induced IDO expression, slices were pretreated with the p38 mitogen-activated protein kinase (MAPK) inhibitor SB 202190 for 30 min before Tat treatment. SB 202190 significantly decreased IDO expression induced by Tat, and this effect was accompanied by a reduction of Tat-induced expression of TNFα, IL-6, iNOS and SERT. CONCLUSION: These data establish that Tat induces IDO expression via an IFNγ-independent mechanism that depends upon activation of p38 MAPK. Targeting IDO itself or the p38 MAPK signaling pathway could provide a novel therapy for comorbid depressive disorders in HIV-1-infected patients.


Assuntos
HIV-1/metabolismo , Hipocampo/enzimologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Comportamento Animal/fisiologia , Comorbidade , Depressão/epidemiologia , Depressão/fisiopatologia , Ativação Enzimática , Infecções por HIV/epidemiologia , Hipocampo/citologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Infusões Intraventriculares , Interferon gama/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes Neuropsicológicos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
8.
J Neurosci ; 29(13): 4200-9, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19339614

RESUMO

Although the tryptophan-degrading enzyme, indoleamine 2,3-dioxygenase (IDO), is a pivotal mediator of inflammation-induced depression, its mechanism of regulation has not yet been investigated in this context. Here, we demonstrate an essential role for interferon (IFN)gamma and tumor necrosis factor (TNF)alpha in the induction of IDO and depressive-like behaviors in response to chronic immune activation. Wild-type (WT) control mice and IFNgammaR(-/-) mice were inoculated with an attenuated form of Mycobacterium bovis, bacille Calmette-Guérin (BCG). Infection with BCG induced an acute episode of sickness that was similar in WT and IFNgammaR(-/-) mice. Increased immobility during the forced swim and tail suspension tests occurred in WT mice 7 d after BCG inoculation but was entirely absent in IFNgammaR(-/-) mice. In WT mice, these indices of depressive-like behavior were associated with chronic upregulation of IFNgamma, interleukin(IL)-1beta, TNFalpha, and IDO. Proinflammatory cytokine expression was elevated in BCG-infected IFNgammaR(-/-) mice as well, but upregulation of lung and brain IDO mRNA was completely abolished. This was accompanied by an attenuation of BCG-induced TNFalpha mRNA and the lack of an increase in plasma kynurenine/tryptophan ratio in the BCG-inoculated IFNgammaR(-/-) mice compared with WT controls. Pretreatment of mice with the TNFalpha antagonist, etanercept, partially blunted BCG-induced IDO activation and depressive-like behavior. In accordance with these in vivo data, IFNgamma and TNFalpha synergized to induce IDO in primary microglia. Together, these data demonstrate that IFNgamma, with TNFalpha, is necessary for induction of IDO and depressive-like behavior in mice after BCG infection.


Assuntos
Depressão/etiologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/administração & dosagem , Mycobacterium bovis/imunologia , Fator de Necrose Tumoral alfa/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Anti-Inflamatórios não Esteroides/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Citocinas/metabolismo , Depressão/tratamento farmacológico , Depressão/microbiologia , Depressão/patologia , Relação Dose-Resposta Imunológica , Sinergismo Farmacológico , Etanercepte , Elevação dos Membros Posteriores/métodos , Comportamento de Doença/efeitos dos fármacos , Resposta de Imobilidade Tônica/efeitos dos fármacos , Resposta de Imobilidade Tônica/fisiologia , Imunoglobulina G/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Interferon gama/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neuroglia , RNA Mensageiro/metabolismo , Receptores de Interferon/deficiência , Receptores do Fator de Necrose Tumoral/uso terapêutico , Serotonina/metabolismo , Natação , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/fisiologia , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA