RESUMO
Curcumin has been modified in various ways to broaden its application in medicine and address its limitations. In this study, we present a series of curcumin-based derivatives obtained by replacing the hydroxy groups in the feruloyl moiety with polyethylene glycol (PEG) chains and the addition of the BF2 moiety to the carbonyl groups. Tested compounds were screened for their cytotoxic activity toward two bladder cancer cell lines, 5637 and SCaBER, and a noncancerous cell line derived from lung fibroblasts (MRC-5). Cell viability was analyzed under normoxic and hypoxic conditions (1% oxygen). Structure-activity relationships (SARs) are discussed, and curcumin derivatives equipped within feruloyl moieties with 3-methoxy and 4-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy} substituents (5) were selected for further analysis. Compound 5 did not affect the viability of MRC-5 cells and exerted a stronger cytotoxic effect under hypoxic conditions. However, the flow cytometry studies showed that PEGylation did not improve cellular uptake. Another observation was that the lack of serum proteins limits the intracellular uptake of curcumin derivative 5. The preliminary mechanism of action studies indicated that compound 5 under hypoxic conditions induced G2/M arrest in a dose-dependent manner and increased the expression of stress-related proteins such as p21/CIP1, phosphorylated HSP27, ADAMTS-1, and phosphorylated JNK. In summary, the results of the studies indicated that PEGylated curcumin is a more potent compound against bladder cancer cell lines than the parent compound, and derivative 5 is worthy of further investigation to clarify its mechanism of anticancer action under hypoxic conditions.
Assuntos
Antineoplásicos , Curcumina , Neoplasias da Bexiga Urinária , Humanos , Curcumina/farmacologia , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Antineoplásicos/farmacologia , Relação Estrutura-AtividadeRESUMO
Resveratrol is a plant-derived phytoalexin found in grapes, red wine and many other plants used in Asian folk medicine. It is extensively studied for pleiotropic biological activity. The most crucial are anticancer and chemopreventive properties. Resveratrol has also been reported to be an antioxidant and phytoestrogen. The phytoestrogenic activity of resveratrol was assayed in different in vitro and in vivo models. Although these works brought some, on the first look, conflicting results, it is commonly accepted that resveratrol interacts with estrogen receptors and functions as a mixed agonist/antagonist. It is widely accepted that the hydroxyl groups are crucial for resveratrol's cytotoxic and antioxidative activity and are responsible for binding estrogen receptors. In this work, we assayed 11 resveratrol analogues, seven barring methoxy groups and six hydroxylated analogues in different combinations at positions 3, 4, 5 and 3',4',5'. For this purpose, recombined estrogen receptors and estrogen-dependent MCF-7 and Ishikawa cells were used. Our study was supported by in silico docking studies. We have shown that, resveratrol and 3,4,4'5'-tetrahydroxystilbene, 3,3',4,5,5'-pentahydroxystilbene and 3,3',4,4',5,5'-hexahydroxystilbene may act as selective estrogen receptor modulators.
Assuntos
Receptores de Estrogênio , Estilbenos , Resveratrol/farmacologia , Receptores de Estrogênio/metabolismo , Fitoestrógenos , Moduladores Seletivos de Receptor Estrogênico , Antioxidantes , Estilbenos/química , Estrogênios/farmacologia , Relação Estrutura-Atividade , Transdução de SinaisRESUMO
This work presents the synthesis and characterization of metal-free, zinc (II), and cobalt (II) porphyrins substituted with short PEG chains. The synthesized compounds were characterized by UV-Vis, 1H and 13C NMR spectroscopy, and MALDI-TOF mass spectrometry. The origin of the absorption bands for tested compounds in the UV-Vis range was determined using a computational model based on the electron density functional theory (DFT) and its time-dependent variant (TD-DFT). The photosensitizing activity was evaluated by measuring the ability to generate singlet oxygen (ΦΔ), which reached values up to 0.54. The photodynamic activity was tested using bladder (5637), prostate (LNCaP), and melanoma (A375) cancer cell lines. In vitro experiments clearly showed the structure-activity relationship regarding types of substituents, their positions in the phenyl ring, and the variety of central metal ions on the porphyrin core. Notably, the metal-free derivative 3 and its zinc derivative 6 exerted strong cytotoxic activity toward 5637 cells, with IC50 values of 8 and 15 nM, respectively. None of the tested compounds induced a cytotoxic effect without irradiation. In conclusion, these results highlight the potential value of the tested compounds for PDT application.
Assuntos
Antineoplásicos , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fotoquímica , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Porfirinas/química , Zinco/farmacologiaRESUMO
Despite the continuous development of medicine, there is still a lack of effective and fully safe protocols for the treatment of neoplastic diseases. The drug-drug conjugates approach seems to give a chance to obtain more efficient molecules. New alkoxy and metronidazole substituted porphyrins were synthesized. Novel porphyrins were purified by flash column chromatography and characterized using NMR, MS, UV-Vis and HPLC. The Nuclear Magnetic Resonance study was performed to annotate experimentally observed 1H NMR and 13C NMR signals of new compounds. The 2D NMR techniques such as 1H-1H COSY (Correlation Spectroscopy), 1H-13C HSQC (Heteronuclear Single Quantum Correlation) and 1H-13C HMBC (Heteronuclear Multiple Bond Correlation) were used for the structure elucidation of the new compounds. In the range of 250-450â¯nm of the absorption spectra, the Soret band was observed, whereas the Q band was noted in the range of 500-650â¯nm. Compounds revealed a fluorescence quantum yield in the range 0.03-0.12. Singlet oxygen generation quantum yields up to 0.54 were determined. Electrochemical properties has also been studied. It has been noticed electropolymerization of compound bearing 5-nitroimidazole substituents. The photodynamic activity of the studied porphyrins against A549 and HEK001/HPV16 cancer cells were examined. The most active against A549 and HEK 001/HPV16 was light-excited trioxanonylporphyrin with the values of IC50 equal to 0.49⯵M and 50â¯nM respectively.
Assuntos
Nitroimidazóis/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas Eletroquímicas , Humanos , Luz , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/síntese química , Porfirinas/farmacologia , Oxigênio Singlete/química , Oxigênio Singlete/metabolismoRESUMO
In screening studies, the cytotoxic activity of four metabolites of resveratrol analogue 3,4,5,4'-tetramethoxystilbene (DMU-212) against A-2780 and SKOV-3 ovarian cancer cells was investigated. The most active metabolite, 3'-hydroxy-3,4,5,4'-tetramethoxystilbene (DMU-214), was chosen for further studies. The cytotoxicity of DMU-214 was shown to be higher than that of the parent compound, DMU-212, in both cell lines tested. Since DMU-212 was supposed to undergo metabolic activation through its conversion to DMU-214, an attempt was made to elucidate the mechanism of its anti-proliferative activity. We found that in SKOV-3 cells lacking p53, DMU-214 induced receptor-mediated apoptosis. In A-2780 cell line with expression of wild-type p53, DMU-214 modulated the expression pattern of p53-target genes driving intrinsic and extrinsic apoptosis pathways, as well as DNA repair and damage prevention. Regardless of the up-regulation of p48, p53R2, sestrins and Gaad45 genes involved in cancer cell DNA repair, we demonstrated the stronger anti-proliferative and pro-apoptotic effects of DMU-214 in A-2780 cells when compared to those in SKOV-3. Hence we verified DMU-214 activity in the xenograft model using SCID mice injected with A-2780 cells. The strong anti-proliferative activity of DMU-214 in the in vivo model allowed to suggest the tested compound as a potential therapeutic in ovarian cancer treatment.