Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Med Chem ; 67(7): 5458-5472, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38556750

RESUMO

The success of arsenic in acute promyelocytic leukemia (APL) treatment is hardly transferred to non-APL cancers, mainly due to the low selectivity and weak binding affinity of traditional arsenicals to oncoproteins critical for cancer survival. We present herein the reinvention of aliphatic trivalent arsenicals (As) as reversible covalent warheads of As-based targeting inhibitors toward Bruton's tyrosine kinase (BTK). The effects of As warheads' valency, thiol protection, methylation, spacer length, and size on inhibitors' activity were studied. We found that, in contrast to the bulky and rigid aromatic As warhead, the flexible aliphatic As warheads were well compatible with the well-optimized guiding group to achieve nanomolar inhibition against BTK. The optimized As inhibitors effectively blocked the BTK-mediated oncogenic signaling pathway, leading to elevated antiproliferative activities toward lymphoma cells and xenograft tumor. Our study provides a promising strategy enabling rational design of new aliphatic arsenic-based reversible covalent inhibitors toward non-APL cancer treatment.


Assuntos
Arsênio , Arsenicais , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Arsênio/farmacologia , Tirosina Quinase da Agamaglobulinemia , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Anal Chem ; 95(40): 14990-14997, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37725609

RESUMO

DNAzyme walker technology is a compelling option for bioanalytical and drug delivery applications. While nucleic acid and protein targets have been used to activate DNAzyme walkers, investigations into enzyme-triggered DNAzyme walkers in living cells are still in their early stages. The base excision repair (BER) pathway presents an array of enzymes that are overexpressed in cancer cells. Here, we introduce a DNAzyme walker system that sensitively and specifically detects the BER enzyme apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1). We constructed the DNAzyme walker on the surface of 20 nm-diameter gold nanoparticles. We achieved a detection limit of 160 fM of APE1 in a buffer and in whole cell lysate equivalent to the amount of APE1 in a single HeLa cell in a sample volume of 100 µL. Confocal imaging of the DNAzyme walking reveals a cytoplasmic distribution of APE1 in HeLa cells. Walking activity is tunable to exogenous Mn2+ concentrations and the uptake of the DNAzyme walker system does not require transfection assistance. We demonstrate the investigative potential of the DNAzyme walker for up-regulated or overactive enzyme biomarkers of the BER pathway in cancer cells.

4.
Int J Hyg Environ Health ; 244: 113990, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714548

RESUMO

The Alberta Biomonitoring Program (ABP) was created in 2005 with the initial goal of establishing baseline levels of exposure to environmental chemicals in specific populations in the province of Alberta, Canada, and was later expanded to include multiple phases. The first two phases focused on evaluating exposure in pregnant women (Phase One, 2005) and children (Phase Two, 2004-2006) by analyzing residual serum specimens. Phase Three (2013-2016) employed active recruitment techniques to evaluate environmental exposures using a revised list of chemicals in paired serum pools from pregnant women and umbilical cord blood. These three phases of the program monitored a total of 226 chemicals in 285 pooled serum samples representing 31,529 individuals. Phase Four (2017-2020) of the ABP has taken a more targeted approach, focusing on the impact of the federal legalization of cannabis on the exposure of pregnant women in Alberta to cannabis, as well as tobacco and alcohol using residual prenatal screening serum specimens. Chemicals monitored in the first three phases include herbicides, neutral pesticides, metals, metalloids, and micronutrients, methylmercury, organochlorine pesticides, organophosphate pesticides, parabens, phthalate metabolites, perfluoroalkyl substances (PFAS), phenols, phytoestrogens, polybrominated compounds, polychlorinated biphenyls (PCBs), dioxins and furans, polycyclic aromatic hydrocarbons (PAHs), and tobacco biomarkers. Phase Four monitored six biomarkers of tobacco, alcohol, and cannabis. All serum samples were pooled. Mean concentrations and 95% confidence intervals (CIs) were calculated for the chemicals detected in ≥25% of the sample pools. cross the first three phases, the data from the ABP has provided baseline exposure levels for the chemicals in pregnant women, children, and newborns across the province. Comparison within and among the phases has highlighted differences in exposure levels with age, geography, seasonality, sample type, and time. The strategies employed throughout the program phases have been demonstrated to provide effective models for population biomonitoring.


Assuntos
Poluentes Ambientais , Praguicidas , Bifenilos Policlorados , Alberta , Monitoramento Biológico , Biomarcadores , Criança , Monitoramento Ambiental , Feminino , Humanos , Recém-Nascido , Exposição Materna , Gravidez
5.
Biochem Pharmacol ; 193: 114799, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678219

RESUMO

Millions of people worldwide are exposed to unacceptable levels of arsenic, a proven human carcinogen, in drinking water. In animal models, arsenic and selenium are mutually protective through formation and biliary excretion of seleno-bis (S-glutathionyl) arsinium ion [(GS)2AsSe]-. Selenium-deficient humans living in arsenic-endemic regions are at increased risk of arsenic-induced diseases, and may benefit from selenium supplementation. The influence of selenium on human arsenic hepatobiliary transport has not been studied using optimal human models. HepaRG cells, a surrogate for primary human hepatocytes, were used to investigate selenium (selenite, selenide, selenomethionine, and methylselenocysteine) effects on arsenic hepatobiliary transport. Arsenite + selenite and arsenite + selenide at different molar ratios revealed mutual toxicity antagonism, with the latter being higher. Significant levels of arsenic biliary excretion were detected with a biliary excretion index (BEI) of 14 ± 8%, which was stimulated to 32 ± 7% by selenide. Consistent with the formation and biliary efflux of [(GS)2AsSe]-, arsenite increased the BEI of selenide from 0% to 24 ± 5%. Arsenic biliary excretion was lost in the presence of selenite, selenomethionine, and methylselenocysteine. Sinusoidal export of arsenic was stimulated ∼1.6-fold by methylselenocysteine, but unchanged by other selenium forms. Arsenic canalicular and sinusoidal transport (±selenide) was temperature- and GSH-dependent and inhibited by MK571. Knockdown experiments revealed that multidrug resistance protein 2 (MRP2/ABCC2) accounted for all detectable biliary efflux of arsenic (±selenide). Overall, the chemical form of selenium and human MRP2 strongly influenced arsenic hepatobiliary transport, information critical for human selenium supplementation in arsenic-endemic regions.


Assuntos
Arsênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo , Compostos de Selênio/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Antagonistas de Leucotrienos/farmacologia , Metiltransferases/genética , Metiltransferases/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Propionatos/farmacologia , Quinolinas/farmacologia , Temperatura , Poluentes Químicos da Água/metabolismo
6.
Mol Cell Proteomics ; 20: 100075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33771697

RESUMO

TMPRSS2-ERG gene fusion, a molecular alteration found in nearly half of primary prostate cancer cases, has been intensively characterized at the transcript level. However limited studies have explored the molecular identity and function of the endogenous fusion at the protein level. Here, we developed immunoprecipitation-mass spectrometry assays for the measurement of a low-abundance T1E4 TMPRSS2-ERG fusion protein, its isoforms, and its interactome in VCaP prostate cancer cells. Our assays quantified total ERG (∼27,000 copies/cell) and its four unique isoforms and revealed that the T1E4-ERG isoform accounted for 52 ± 3% of the total ERG protein in VCaP cells, and 50 ± 11% in formalin-fixed paraffin-embedded prostate cancer tissues. For the first time, the N-terminal peptide (methionine-truncated and N-acetylated TASSSSDYGQTSK) unique for the T1/E4 fusion was identified. ERG interactome profiling with the C-terminal, but not the N-terminal, antibodies identified 29 proteins, including mutually exclusive BRG1- and BRM-associated canonical SWI/SNF chromatin remodeling complexes. Our sensitive and selective IP-SRM assays present alternative tools to quantify ERG and its isoforms in clinical samples, thus paving the way for development of more accurate diagnostics of prostate cancer.


Assuntos
Proteínas de Fusão Oncogênica/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Masculino , Espectrometria de Massas/métodos , Proteínas de Fusão Oncogênica/genética , Mapas de Interação de Proteínas , Isoformas de Proteínas/metabolismo
9.
Anal Chem ; 92(9): 6495-6501, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250595

RESUMO

The e antigen of hepatitis B (HBeAg) is positively associated with an increased risk of developing liver cancer and cirrhosis in chronic hepatitis B (CHB) patients. Clinical monitoring of HBeAg provides guidance to the treatment of CHB and the assessment of disease progression. We describe here an affinity binding assay for HBeAg, which takes advantage of G-quadruplex aptamers for enhanced binding and stability. We demonstrate a strategy to improve the binding affinity of aptamers by modifying their sequences upon their G-quadruplex and secondary structures. On the basis of predicting a stable G-quadruplex and a secondary structure, we truncated 19 nucleotides (nt) from the primer regions of an 80-nt aptamer, and the resulting 61-nt aptamer enhanced binding affinity by 19 times (Kd = 1.2 nM). We mutated a second aptamer (40 nt) in one loop region and incorporated pyrrolo-deoxycytidine to replace deoxycytidine in another loop. The modified 40-nt aptamer, with a stable G-quadruplex and two modified loops, exhibited a 100 times higher binding affinity for HBeAg (Kd = 0.4 nM) than the unmodified original aptamer. Using the two newly modified aptamers, one serving as the capture and the other as the reporter, we have developed an improved sandwich binding assay for HBeAg. Analyses of HBeAg in serum samples (concentration ranging from 0.1 to 60 ng/mL) of 10 hepatitis B patients, showing consistent results with clinical tests, demonstrate a successful application of the aptamer modification strategy and the associated aptamer binding assay.


Assuntos
Aptâmeros de Nucleotídeos/química , Antígenos E da Hepatite B/química , Aptâmeros de Nucleotídeos/sangue , Sítios de Ligação , Quadruplex G , Antígenos E da Hepatite B/sangue , Hepatite B Crônica/sangue , Humanos , Conformação de Ácido Nucleico
10.
ACS Nano ; 14(3): 2817-2826, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32048826

RESUMO

The RNA-guided CRISPR/Cas9 system is a powerful genome-editing technology with broad applications. Improving delivery efficiency and controllable activity of the CRISPR/Cas9 system is an area of intense research. We report the design, construction, and application of a CRISPR/Cas9 nanomachine (LACM), activated by a near-infrared (NIR) laser, which enables efficient delivery of single-guide RNA (sgRNA) into living cells and achieves controlled release of the sgRNA for the CRISPR/Cas9 activity. The LACM was constructed using a gold nanorod (AuNR) as a carrier that was decorated with dozens of protector DNAs stably hybridizing with the target binding domain of sgRNA. The DNA assembly on the AuNR protected the sgRNA. Irradiation with a NIR laser generated heat on the AuNR, resulting in controlled release of sgRNA, which guided the CRISPR/Cas9 genome editing. Successful editing of the EGFP and EMX1 genes in A549 and HEK293T cells, as well as knocking down of the PLK1 gene to induce apoptosis of the target cells, highlights the promising potential of the LACM for diverse applications.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Nanomedicina , Células A549 , Apoptose/genética , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/genética , Receptores ErbB/genética , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Raios Infravermelhos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Quinase 1 Polo-Like
11.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31676473

RESUMO

The organoarsenical feed additive 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone [ROX]) is widely used and released into the environment. We previously showed a two-step pathway of ROX transformation by Enterobacter sp. strain CZ-1 involving the reduction of ROX to 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) and the acetylation of 3-AHPAA to N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA) (K. Huang, H. Peng, F. Gao, Q. Liu, et al., Environ Pollut 247:482-487, 2019, https://doi.org/10.1016/j.envpol.2019.01.076). In this study, we identified two nhoA genes (nhoA1 and nhoA2), encoding N-hydroxyarylamine O-acetyltransferases, as responsible for 3-AHPAA acetylation in Enterobacter sp. strain CZ-1. The results of genetic disruption and complementation showed that both nhoA genes are involved in ROX biotransformation and that nhoA1 is the major 3-AHPAA acetyltransferase gene. Quantitative reverse transcription-PCR analysis showed that the relative expression level of nhoA1 was 3-fold higher than that of nhoA2 Each of the recombinant NhoAs was overexpressed in Escherichia coli BL21 and homogenously purified as a dimer by affinity chromatography. Both purified NhoAs catalyzed acetyl coenzyme A-dependent 3-AHPAA acetylation. The Km values of 3-AHPAA for NhoA1 and NhoA2 were 151.5 and 428.3 µM, respectively. Site-directed mutagenesis experiments indicated that two conserved arginine and cysteine residues of each NhoA were necessary for their enzyme activities.IMPORTANCE Roxarsone (ROX) is an organoarsenic feed additive that has been widely used in poultry industries for growth promotion, coccidiosis control, and meat pigmentation improvement for more than 70 years. Most ROX is excreted in the litter and dispersed into the environment, where it is transformed by microbes into different arsenic-containing compounds. A major product of ROX transformation is N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), which is also used as a clinical drug for treating refractory bacterial vaginosis. Here, we report the cloning and functional characterization of two genes encoding N-hydroxyarylamine O-acetyltransferases, NhoA1 and NhoA2, in Enterobacter sp. strain CZ-1, which catalyze the acetylation of 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) formed by the reduction of ROX to N-AHPAA. This study provides new insights into the function of N-hydroxyarylamine O-acetyltransferase in the transformation of an important organoarsenic compound.


Assuntos
Acetiltransferases/metabolismo , Arsenicais/metabolismo , Proteínas de Bactérias/metabolismo , Enterobacter/metabolismo , Acetilação , Enterobacter/enzimologia , Redes e Vias Metabólicas
12.
Environ Int ; 133(Pt A): 105154, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31521816

RESUMO

2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a predominant polybrominated diphenyl ether (PBDE), has received extensive attention for its potential environmental impact. An integrated study of metabolomics and transcriptomics was conducted on two rice (Oryza sativa) cultivars, Lianjing-7 (LJ-7) and Yongyou-9 (YY-9), which have been identified as tolerant and sensitive cultivars to BDE-47, respectively. The objective was to investigate the molecular mechanisms of their different ability to tolerate BDE-47. Both rice plants were cultivated to maturity in soils containing three concentrations of BDE-47 (10, 20, and 50 mg/kg). Metabolomic analyses of rice grains identified 65 metabolites in LJ-7 and 45 metabolites in YY-9, including amino acids, saccharides, organic acids, fatty acids, and secondary metabolites. In the tolerant cultivar LJ-7 exposed to 50 mg/kg BDE-47, concentrations of most of the metabolites increased significantly, with α-ketoglutaric acid increased by 20-fold and stigmastanol increased by 12-fold. In the sensitive cultivar YY-9, the concentrations of most metabolites increased after the plant was exposed to 1 and 10 mg/kg BDE-47 but decreased after the plant was exposed to 50 mg/kg BDE-47. Transcriptomic data demonstrated that regulation of gene expressions was affected most in LJ-7 exposed to 50 mg/kg BDE-47 (966 genes up-regulated and 620 genes down-regulated) and in YY-9 exposed to 10 mg/kg BDE-47 (85 genes up-regulated and 291 genes down-regulated), in good accordance with the observed metabolic alternation in the two cultivars. Analyses of metabolic pathways and KEGG enrichment revealed that many biological processes, including energy consumption and biosynthesis, were perturbed in the two rice cultivars by BDE-47. A majority of metabolites and genes involved in dominating pathways of energy consumption (e.g., tricarboxylic acid cycle) and the biosynthesis (e.g., metabolism of saccharides and amino acids) were enhanced in LJ-7 by BDE-47. In contrast, energy consumption was increased while biosynthetic processes were inhibited in YY-9 by BDE-47, which could lead to the sensitivity of YY-9 to BDE-47. The combined results suggest that the different defensive abilities of these two rice cultivars in response to BDE-47 could be attributed to their differences in energy-consumption strategy and biosynthesis of nutritional components in grains. This study provides a useful reference for rice cultivation in PBDE-polluted areas.


Assuntos
Éteres Difenil Halogenados/toxicidade , Metabolômica , Oryza/efeitos dos fármacos , Sementes/efeitos dos fármacos , Transcriptoma , Poluentes Ambientais/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/metabolismo , Sementes/metabolismo , Solo/química
14.
Cell Physiol Biochem ; 47(6): 2544-2557, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29996121

RESUMO

BACKGROUND/AIMS: Macrophages exhibit dynamic pro-inflammatory and resolving activities in myocardial infarction. The present study investigated whether caffeic acid derivatives could induce macrophage polarization towards a resolving M2 phenotype against myocardial infarction injury. METHODS: Western blotting, RT-PCR and flow cytometry techniques are used to evaluate macrophage biomarkers expression and specific proteins in the related signaling pathways. Ligation of the left anterior descending artery induced rat model of myocardial infarction, TTC staining and immunohistochemical staining are used to examine cardioprotective effect in vivo. RESULTS: We initially evaluated the anti-inflammatory activity of four caffeic acid derivatives including n-propargyl caffeamide (PACA) in RAW264.7 macrophages. As result, PACA selectively suppressed the up-regulation of inducible nitric oxide synthase (iNOS) over cyclooxygenase-2 (COX-2) in lipopolysaccharides (LPS)-stimulated cells. We subsequently examined the effects of PACA on macrophage polarization by determining macrophage biomarkers. PACA down-regulated M1 biomarkers (e.g., iNOS, tumor necrosis factor-α (TNF-α), C-X-C motif chemokine 10 (CXCL10) and CD80) but up-regulated M2 biomarkers (e.g., Ym-1 and arginase-1). On the other hand, PACA suppressed macrophage chemotaxis while enhanced macrophage phagocytosis. We further examined the in vivo cardioprotective activity of PACA in a rat model of myocardial infarction. Following ligation of the left anterior descending artery, PACA treatment effectively reduced myocardial infarct size and promoted macrophage M2 polarization. We finally explored the underlying mechanisms. We found that PACA attenuated LPS-induced NF-ĸB activation while activated Nrf2/HO-1 pathway. HO-1 inhibitor SnPP attenuated the effects of PACA on iNOS expression in LPS-challenged macrophages, possibly by regulating the cross-talk between HO-1 and NF-ĸB pathways. CONCLUSIONS: The key finding from the present study was that PACA promoted timely switch of macrophage phenotypes from pro-inflammatory M1 to resolving M2. We anticipate that PACA is a potential drug candidate for the resolution of inflammation and cardiac repair after myocardial infarction.


Assuntos
Ácidos Cafeicos/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Macrófagos/patologia , Camundongos , Traumatismo por Reperfusão Miocárdica/patologia , Células RAW 264.7 , Ratos
15.
Drug Metab Dispos ; 46(8): 1096-1105, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752257

RESUMO

The ATP-binding cassette (ABC) transporter multidrug resistance protein 1 (MRP1/ABCC1) protects cells from arsenic (a proven human carcinogen) through the cellular efflux of arsenic triglutathione [As(GS)3] and the diglutathione conjugate of monomethylarsonous acid [MMA(GS)2]. Previously, differences in MRP1 phosphorylation (at Y920/S921) and N-glycosylation (at N19/N23) were associated with marked differences in As(GS)3 transport kinetics between HEK293 and HeLa cell lines. In the current study, cell line differences in MRP1-mediated cellular protection and transport of other arsenic metabolites were explored. MRP1 expressed in HEK293 cells reduced the toxicity of the major urinary arsenic metabolite dimethylarsinic acid (DMAV), and HEK-WT-MRP1-enriched vesicles transported DMAV with high apparent affinity and capacity (Km 0.19 µM, Vmax 342 pmol⋅mg-1protein⋅min-1). This is the first report that MRP1 is capable of exporting DMAV, critical for preventing highly toxic dimethylarsinous acid formation. In contrast, DMAV transport was not detected using HeLa-WT-MRP1 membrane vesicles. MMA(GS)2 transport by HeLa-WT-MRP1 vesicles had a greater than threefold higher Vmax compared with HEK-WT-MRP1 vesicles. Cell line differences in DMAV and MMA(GS)2 transport were not explained by differences in phosphorylation at Y920/S921. DMAV did not inhibit, whereas MMA(GS)2 was an uncompetitive inhibitor of As(GS)3 transport, suggesting that DMAV and MMA(GS)2 have nonidentical binding sites to As(GS)3 on MRP1. Efflux of different arsenic metabolites by MRP1 is likely influenced by multiple factors, including cell and tissue type. This could have implications for the impact of MRP1 on both tissue-specific susceptibility to arsenic-induced disease and tumor sensitivity to arsenic-based therapeutics.


Assuntos
Arsênio/metabolismo , Transporte Biológico/fisiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ácido Cacodílico/análogos & derivados , Ácido Cacodílico/metabolismo , Carcinógenos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Glutationa/metabolismo , Glicosilação/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Cinética , Compostos Organometálicos/metabolismo , Fosforilação/efeitos dos fármacos
16.
Talanta ; 184: 446-451, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29674067

RESUMO

Arsenic in hair and nails has been used to assess chronic exposure of humans to environmental arsenic. However, it remains to be seen whether it is appropriate to evaluate acute exposure to sub-lethal doses of arsenic typically used in therapeutics. In this study, hair, fingernail and toenail samples were collected from nine acute promyelocytic leukemia (APL) patients who were administered intravenously the daily dose of 10 mg arsenic trioxide (7.5 mg arsenic) for up to 54 days. These hair and nail samples were analyzed for arsenic species using high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection (HPLC-ICPMS). Inorganic arsenite was the predominant form among water-extractable arsenicals. Dimethylarsinic acid (DMAV), monomethylarsonic acid (MMAV), monomethylarsonous acid (MMAIII), monomethylmonothioarsonic acid (MMMTAV), and dimethylmonothioarsinic acid (DMMTAV) were also detected in both hair and nail samples. This is the first report of the detection of MMAIII and MMMTAV as metabolites of arsenic in hair and nails of APL patients.


Assuntos
Arsênio/análise , Arsenicais/uso terapêutico , Cabelo/química , Leucemia Promielocítica Aguda/tratamento farmacológico , Unhas/química , Óxidos/uso terapêutico , Adulto , Trióxido de Arsênio , Arsenicais/administração & dosagem , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Óxidos/administração & dosagem , Adulto Jovem
17.
Environ Pollut ; 237: 308-317, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29499574

RESUMO

Polybrominated diphenyl ethers (PBDEs) are toxic chemicals widely distributed in the environment, but few studies are available on their potential toxicity to rice at metabolic level. Therefore we exposed ten rice (Oryza sativa) varieties to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a predominant congener of PBDEs, in hydroponic solutions with different concentrations. Two varieties that showed different biological effects to BDE-47, YY-9 and LJ-7, were screened as sensitive and tolerant varieties according to changes of morphological and physiological indicators. Metabolic research was then conducted using gas chromatography-mass spectrometry combined with diverse analyses. Results showed that LJ-7 was more active in metabolite profiles and adopted more effective antioxidant defense machinery to protect itself against oxidative damages induced by BDE-47 than YY-9. For LJ-7, the contents of 13 amino acids and 24 organic acids, especially l-glutamic acid, beta-alanine, glycolic acid and glyceric acid were up-regulated significantly which contributed to scavenging reactive oxygen species. In the treatment of 500 µg/L BDE-47, the contents of these four metabolites increased by 33.6-, 19.3-, 10.6- and 10.2-fold, respectively. The levels of most saccharides (such as d-glucose, lactulose, maltose, sucrose and d-cellobiose) also increased by 1.7-12.4 fold which promoted saccharide-related biosynthesis metabolism. Elevation of tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism enhanced energy-producing processes. Besides, the contents of secondary metabolites, chiefly polyols and glycosides increased significantly to act on defending oxidative stress induced by BDE-47. In contrast, the levels of most metabolites decreased significantly for YY-9, especially those of 13 amino acids (by 0.9%-67.1%) and 19 organic acids (by 7.8%-70.0%). The positive metabolic responses implied LJ-7 was tolerant to BDE-47, while the down-regulation of most metabolites indicated the susceptible nature of YY-9. Since metabolic change might affect the yield and quality of rice, this study can provide useful reference for rice cultivation in PBDEs-polluted areas.


Assuntos
Éteres Difenil Halogenados/toxicidade , Oryza/metabolismo , Poluentes Químicos da Água/toxicidade , Antioxidantes , Éter , Cromatografia Gasosa-Espectrometria de Massas , Éteres Difenil Halogenados/metabolismo , Hidroponia , Metabolômica , Oryza/efeitos dos fármacos , Estresse Oxidativo/fisiologia
18.
Environ Sci Technol ; 52(5): 2898-2908, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29420883

RESUMO

Halobenzoquinones (HBQs) are a class of emerging disinfection byproducts. Chronic exposure to chlorinated drinking water is potentially associated with an increased risk of human bladder cancer. HBQ-induced cytotoxicity involves depletion of cellular glutathione (GSH), but the underlying mechanism remains unclear. Here we used ultrahigh performance liquid chromatography-high resolution mass spectrometry and electron paramagnetic resonance spectroscopy to study interactions between HBQs and GSH and found that HBQs can directly react with GSH, forming various glutathionyl conjugates (HBQ-SG) in both aqueous solution and HepG2 cells. We found that the formation of HBQ-SG varies with the initial molar ratio of GSH to HBQ in reaction mixtures. Higher molar ratios of GSH to HBQ facilitate the conjugation of more GSH molecules to an HBQ molecule. We deduced the reaction mechanism between GSH and HBQs, which involves redox cycling-induced formation of halosemiquinone (HSQ) free radicals and glutathione disulfide, Michael addition, as well as nucleophilic substitution. The proposed reaction rates are in the following order: formation of HSQ radicals > substitution of bromine by GSH > Michael addition of GSH on the benzoquinone ring > substitution of chlorine by GSH > substitution of the methyl group by GSH. The conjugates identified in HBQ-treated HepG2 cells were the same as those found in aqueous solution containing a 5:1 ratio of GSH:HBQs.


Assuntos
Água Potável , Glutationa , Desinfecção , Células Hep G2 , Humanos , Espectrometria de Massas em Tandem
19.
Chemosphere ; 193: 514-520, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29169126

RESUMO

Contamination of organic pollutants in the environment is usually accompanied by heavy metals. However, a little information on the influences of heavy metals on the uptake, translocation and transformation of organic pollutants in plants is available. In this study, ten-day hydroponic exposure was conducted to explore the influence of copper (Cu) on the bioaccumulation and biotransformation of polychlorinated biphenyls (PCBs) in intact young rice (Oryza sativa L.). Low dose of Cu (≤100 µmol/L) increased the accumulation of CB-61 in rice plants, while excess concentrations of Cu (>100 µmol/L) inhibited uptake and translocation of CB-61. Effect of Cu on the uptake of CB-61 was attributed to the Cu-triggered damage to the roots of rice plants. The presence of a moderate dose of Cu (50 µmol/L) enhanced the formation of hydroxylated polychlorinated biphenyls (OH-PCBs) and methoxylated polychlorinated biphenyls (MeO-PCBs), whereas excess concentrations of Cu (250 µmol/L) inhibited the metabolism of CB-61. The effect of Cu on the interconversion between 4'-OH-CB-61 and 4'-MeO-CB-61 was also concentration dependent: the biotransformation was promoted by a moderate concentration of Cu but inhibited by excess concentrations of Cu. The activities of Cytochrome P450 (CYP450) and S-adenosyl-l-methionine (SAM)-dependent methyltransferase in the roots of rice plants exposed to Cu and CB-61 or its derivatives were consistent with the pattern and trend of the metabolites observed in rice roots. These results could provide valuable insights into the interactions and combined effects of PCBs and heavy metals in plants.


Assuntos
Biotransformação , Cobre/toxicidade , Oryza/fisiologia , Bifenilos Policlorados/metabolismo , Poluentes do Solo/toxicidade , Transporte Biológico , Cobre/metabolismo , Hidroponia , Hidroxilação , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Oryza/efeitos dos fármacos , Oryza/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
20.
Environ Sci Technol ; 52(3): 1386-1392, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29280623

RESUMO

Environmental contamination and human consumption of chickens could result in potential exposure to Roxarsone (3-nitro-4-hydroxyphenylarsonic acid), an organic arsenical that has been used as a chicken feed additive in many countries. However, little is known about the metabolism of Roxarsone in humans. The objective of this research was to investigate the metabolism of Roxarsone in human liver cells and to identify new arsenic metabolites of toxicological significance. Human primary hepatocytes and hepatocellular carcinoma HepG2 cells were treated with 20 or 100 µM Roxarsone. Arsenic species were characterized using a strategy of complementary chromatography and mass spectrometry. The results showed that Roxarsone was metabolized to more than 10 arsenic species in human hepatic cells. A new metabolite was identified as a thiolated Roxarsone. The 24 h IC50 values of thiolated Roxarsone for A549 lung cancer cells and T24 bladder cancer cells were 380 ± 80 and 42 ± 10 µM, respectively, more toxic than Roxarsone, whose 24 h IC50 values for A549 and T24 were 9300 ± 1600 and 6800 ± 740 µM, respectively. The identification and toxicological studies of the new arsenic metabolite are useful for understanding the fate of arsenic species and assessing the potential impact of human exposure to Roxarsone.


Assuntos
Arsênio , Roxarsona , Animais , Galinhas , Hepatócitos , Humanos , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA