Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 926: 175026, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35569546

RESUMO

High doses of salicylate induce tinnitus in humans and experimental animals. The Dorsal Cochlear Nucleus is implicated with the genesis of tinnitus, and increased activity in this nucleus is seen in animal models of tinnitus. Incubation of brainstem slices containing the DCN with millimolar salicylate reduces the spontaneous firing of glycinergic cartwheel neurons and glycinergic neurotransmission on fusiform neurons, the principal neuron of this nucleus. However, the mechanism of salicylate mediating this effect is not known. Recently, we have shown that KATP channels strongly modulate the spontaneous firing of cartwheel neurons. We tested if KATP channels could mediate the effects of salicylate on cartwheel neurons. Perfusion of 1.4 mM salicylate hyperpolarizes the membrane of cartwheel neurons and stops firing. Salicylate produces an outward current similar to the KATP current seen in quiet cartwheel neurons. Activation of this current is occluded by the KATP agonist diazoxide, which is produced by the opening of KATP channels. The antagonist of AMP-kinase (AMPK), dorsomorphim, inhibited salicylate effects, suggesting that they could be mediated by activation of this kinase. Still, the AMPK agonist, AICAR, did not reproduce salicylate effects but occluded them. Additionally, inhibiting mitochondrial ATP synthesis with the protonophore CCCP reproduced, albeit with less efficacy, and inhibited the effects of salicylate. We concluded that salicylate in millimolar concentrations opens KATP channels in DCN cartwheel neurons, inhibiting spontaneous firing of these neurons, probably by activating AMPK and reducing mitochondrial ATP synthesis.


Assuntos
Núcleo Coclear , Zumbido , Proteínas Quinases Ativadas por AMP , Trifosfato de Adenosina/farmacologia , Animais , Núcleo Coclear/fisiologia , Canais KATP/farmacologia , Neurônios , Ratos , Salicilatos/farmacologia
2.
Cell Mol Neurobiol ; 41(4): 751-763, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32445041

RESUMO

Exposure to noise produces cognitive and emotional disorders, and recent studies have shown that auditory stimulation or deprivation affects hippocampal function. Previously, we showed that exposure to high-intensity sound (110 dB, 1 min) strongly inhibits Schaffer-CA1 long-term potentiation (LTP). Here we investigated possible mechanisms involved in this effect. We found that exposure to 110 dB sound activates c-fos expression in hippocampal CA1 and CA3 neurons. Although sound stimulation did not affect glutamatergic or GABAergic neurotransmission in CA1, it did depress the level of brain-derived neurotrophic factor (BDNF), which is involved in promoting hippocampal synaptic plasticity. Moreover, perfusion of slices with BDNF rescued LTP in animals exposed to sound stimulation, whereas BDNF did not affect LTP in sham-stimulated rats. Furthermore, LM22A4, a TrkB receptor agonist, also rescued LTP from sound-stimulated animals. Our results indicate that depression of hippocampal BDNF mediates the inhibition of LTP produced by high-intensity sound stimulation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/deficiência , Hipocampo/fisiologia , Potenciação de Longa Duração , Som , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/fisiologia , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/metabolismo , Ratos Wistar , Sinapses/fisiologia , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo
3.
J Physiol ; 599(5): 1611-1630, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369743

RESUMO

KEY POINTS: Cartwheel neurons provide potent inhibition to fusiform neurons in the dorsal cochlear nucleus (DCN). Most cartwheel neurons fire action potentials spontaneously, but the ion channels responsible for this intrinsic activity are unknown. We investigated the ion channels responsible for the intrinsic firing of cartwheel neurons and the stable resting membrane potential found in a fraction of these neurons (quiet neurons). Among the ion channels controlling membrane potential of cartwheel neurons, the presence of open ATP-sensitive potassium channels (KATP ) is responsible for the existence of quiet neurons. Our results pinpoint KATP channel modulation as a critical factor controlling the firing of cartwheel neurons. Hence, it is a crucial channel influencing the balance of excitation and inhibition in the DCN. ABSTRACT: Cartwheel neurons from the dorsal cochlear nucleus (DCN) are glycinergic interneurons and the primary source of inhibition on the fusiform neurons, the DCN's principal excitatory neuron. Most cartwheel neurons present spontaneous firing (active neurons), producing a steady inhibitory tone on fusiform neurons. In contrast, a small fraction of these neurons do not fire spontaneously (quiet neurons). Hyperactivity of fusiform neurons is seen in animals with behavioural evidence of tinnitus. Because of its relevance in controlling the excitability of fusiform neurons, we investigated the ion channels responsible for the spontaneous firing of cartwheel neurons in DCN slices from rats. We found that quiet neurons presented an outward conductance not seen in active neurons, which generates a stable resting potential. This current was sensitive to tolbutamide, an ATP-sensitive potassium channel (KATP ) antagonist. After inhibition with tolbutamide, quiet neurons start to fire spontaneously, while the active neurons were not affected. On the other hand, in active neurons, KATP agonist diazoxide activated a conductance similar to quiet neurons' KATP conductance and stopped spontaneous firing. According to the effect of KATP channels on cartwheel neuron firing, glycinergic neurotransmission in DCN was increased by tolbutamide and decreased by diazoxide. Our results reveal a role of KATP channels in controlling the spontaneous firing of neurons not involved in fuel homeostasis.


Assuntos
Núcleo Coclear , Potenciais de Ação , Trifosfato de Adenosina , Animais , Interneurônios , Ratos , Transmissão Sináptica
4.
Neurosci Lett ; 715: 134577, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31715290

RESUMO

Physical exercise-induced inflammation may be beneficial when exercise is regular but it may be harmful when exercise is intense and performed by unaccustomed individuals/rats. Molecular hydrogen (H2) has recently emerged as a powerful anti-inflammatory, antioxidant and anti-apoptotic molecule in a number of pathological conditions, but little is known about its putative role under physiological conditions such as physical exercise. Therefore, we tested the hypothesis that H2 decreases intense acute exercise-induced inflammation in the hippocampus, since it is a brain region particularly susceptible to inflammation. Moreover, we also assessed hippocampus oxidative status. Rats ran on a sealed treadmill inhaling either the H2 (2% H2, 21% O2, balanced with N2) or the control gas (0% H2, 21% O2, balanced with N2) and hippocampal samples were collected immediately or 3 h after exercise. We measured hippocampal levels of cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6 and IL-10] and oxidative markers [superoxide dismutase (SOD), thiobarbituric acid reactive species (TBARS) and nitrite/nitrate (NOx)]. Exercise increased TNF-α, IL-6 and IL-10 immediately after the session, whereas no change in IL-1ß levels was observed. Conversely, exercise did not cause any change in SOD activity, TBARS and NOx levels. H2 inhibited the exercise-induced surges in TNF-α and IL-6, and potentiated the IL-10 surge, immediately after the exercise. Moreover, no change in IL1-ß levels of rats inhaling H2 was observed. Regarding the oxidative stress markers, H2 failed to cause any change in SOD activity, TBARS and NOx levels. No significant change was observed in any of the assessed parameters 3 h after the exercise bout. These data are consistent with the notion that H2 acts as a powerful anti-inflammatory agent not only down-modulating pro-inflammatory cytokines (TNF-α and IL-6) but also upregulating an anti-inflammatory cytokine (IL-10) production without affecting the local oxidative stress status. These data indicate that H2 effectively decreases exercise-induced inflammation in the hippocampus, despite the fact that this region is particularly prone to inflammatory insults.


Assuntos
Anti-Inflamatórios/administração & dosagem , Hipocampo/metabolismo , Hidrogênio/administração & dosagem , Mediadores da Inflamação/metabolismo , Condicionamento Físico Animal/efeitos adversos , Comportamento Sedentário , Administração por Inalação , Animais , Hipocampo/efeitos dos fármacos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Condicionamento Físico Animal/tendências , Distribuição Aleatória , Ratos , Ratos Wistar
5.
Exp Physiol ; 94(1): 38-45, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18931046

RESUMO

Peripheral chemoreflex activation in awake rats or in the working heart-brainstem preparation (WHBP) produces sympathoexcitation, bradycardia and an increase in the frequency of phrenic nerve activity. Our focus is the neurotransmission of the sympathoexcitatory component of the chemoreflex within the nucleus of the tractus solitarius (NTS), and recently we verified that the simultaneous antagonism of ionotropic glutamate and purinergic P(2) receptors in the NTS blocked the pressor response and increased thoracic sympathetic activity in awake rats and WHBP, respectively, in response to peripheral chemoreflex activation. These previous data suggested the involvement of ATP and L-glutamate in the NTS in the processing of the sympathoexcitatory component of the chemoreflex by unknown mechanisms. For a better understanding of these mechanisms, here we used a patch-clamp approach in brainstem slices to evaluate the characteristics of the synaptic transmission of NTS neurons sending projections to the ventral medulla, which include the premotor neurons involved in the generation of the sympathetic outflow. The NTS neurons sending projections to the ventral medulla were identified by previous microinjection of the membrane tracer dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), in the ventral medulla and the spontaneous (sEPSCs) and tractus solitarius (TS)-evoked excitatory postsynaptic current (TS-eEPSCs) were recorded using patch clamp. With this approach, we made the following observations on NTS neurons projecting to the ventral medulla: (i) the sEPSCs and TS-eEPSCs of DiI-labelled NTS neurons were completely abolished by 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), an antagonist of ionotropic non-NMDA glutamatergic receptors, showing that they are mediated by L-glutamate; (ii) application of ATP increased the frequency of appearance of spontaneous glutamatergic currents, reflecting an increased exocytosis of glutamatergic vesicles; and (iii) ATP decreased the peak of TS-evoked glutamatergic currents. We conclude that L-glutamate is the main neurotransmitter of spontaneous and TS-evoked synaptic activities in the NTS neurons projecting to the ventral medulla and that ATP has a dual modulatory role on this excitatory transmission, facilitating the spontaneous glutamatergic transmission and inhibiting the TS-evoked glutamatergic transmission. These data also suggest that ATP is not acting as a cotransmitter with L-glutamate, at least at the level of this subpopulation of NTS neurons studied.


Assuntos
Trifosfato de Adenosina/fisiologia , Células Quimiorreceptoras/fisiologia , Ácido Glutâmico/fisiologia , Neurotransmissores/fisiologia , Sistema Nervoso Periférico/fisiologia , Núcleo Solitário/fisiologia , Animais , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
6.
Eur J Neurosci ; 27(12): 3095-108, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18598256

RESUMO

Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance indendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a 'dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials).


Assuntos
Potenciais de Ação/fisiologia , Dendritos/fisiologia , Neurônios/fisiologia , Núcleo Olivar/citologia , Núcleo Olivar/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Anticorpos , Axônios/fisiologia , Cálcio/metabolismo , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Microscopia Eletrônica , Modelos Neurológicos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/imunologia , Canais de Sódio/fisiologia , ATPase Trocadora de Sódio-Potássio/imunologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Tetrodotoxina/farmacologia
7.
Cell Motil Cytoskeleton ; 65(6): 441-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18330901

RESUMO

Nuclear actin and nuclear myosins have been implicated in the regulation of gene expression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser(1650) MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine(1650) and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser(1650) MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser(1650) MVa to nucleoli, as well as separating a fraction of phospho-ser(1650) MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation.


Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Motores Moleculares/fisiologia , Miosina Tipo V/metabolismo , Actinas/metabolismo , Actinas/ultraestrutura , Animais , Linhagem Celular Tumoral , Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Células HeLa , Humanos , Camundongos , Miosina Tipo V/química , Miosina Tipo V/ultraestrutura , Fosforilação , Ratos , Serina/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA